首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:60004--1)

无线激光与射频互补通信系统的关键技术

Key Technologies of Wireless Laser and Radio Frequency Complementary Communication System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了无线激光与射频(RF)互补通信系统的突出地位和重大成果,说明了无线激光与RF互补通信技术的优越性和重要性。描述了无线激光与RF互补通信的系统结构,说明无线激光与RF互补通信系统研究的可行性。结合国外近年来的互补通信系统最新研究成果,重点对遇到的一系列问题进行分析。指出了互补通信系统现阶段面临的挑战,阐述了应对这些挑战的关键技术,并指出其应用前景和发展趋势。

Abstract

The important role and major achievements of a wireless laser and radio frequency (RF) complementary communication system are introduced, and the superiority and importance of the wireless laser and RF complementary communication technologies are explained. And the basic working principle of the wireless laser and RF complementary communication system is expounded, and the feasibility of the wireless laser and RF complementary communication system is illustrated. Combining with the latest research results of the complementary communication systems in foreign countries in recent years, the key problems encountered are mainly analyzed. The challenges faced by the complementary communication systems at present are presented. The key technologies to solve these challenges are put forward. The application prospect and development trend of the complementary communication are pointed out.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.12;TN925+.91

DOI:10.3788/lop56.060004

所属栏目:综述

基金项目:国家自然科学基金(51605465)、中国科学院科研装备研制项目

收稿日期:2018-08-27

修改稿日期:2018-09-27

网络出版日期:2018-10-12

作者单位    点击查看

丁良:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
吴志勇:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
谷雨聪:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
高则超:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
胡金田:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
马爽:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:丁良(dingliang100250206@163.com)

【1】Bojic D, Sasaki E, Cvijetic N, et al. Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management[J]. IEEE Communications Magazine, 2013, 51(9): 86-93.

【2】Khalighi M A, Uysal M. Survey on free space optical communication: A communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 2231-2258.

【3】Uysal M, Nouri H. Optical wireless communications: An emerging technology[C]∥2014 Conference on Transparent Optical Networks(ICTON),July 6-10,2014, Graz, Austria. New York: IEEE, 14526239.

【4】Murphy D V, Kansky J E, Grein M E, et al. LLCD operations using the lunar lasercom ground terminal[J]. Proceedings of SPIE, 2014, 8971: 89710V.

【5】Sodnik Z, Smit H, Sans M, et al. LLCD operations using the lunar lasercom OGS terminal[J]. Proceedings of SPIE, 2014, 8971: 89710W.

【6】Biswas A, Kovalik J M, Wright M W, et al. LLCD operations using the optical communications telescope laboratory (OCTL)[J]. Proceedings of SPIE, 2014, 8971: 89710X.

【7】Oaida B V, Wu W, Erkmen B I, et al. Optical link design and validation testing of the optical payload for lasercomm science (OPALS) system[J]. Proceedings of SPIE, 2014, 8971: 89710U.

【8】Sindiy O, Abrahamson M, Biswas A, et al. Lessons learned from optical payload for lasercomm science (OPALS) mission operations[C]∥AIAA SPACE 2015 Conference and Exposition, AIAA SPACE Forum (AIAA 2015-4657), 2015: 1-11.

【9】Biswas A, Oaida B, Andrews K S, et al. Optical payload for lasercomm science (OPALS) link validation during operations from the ISS[J]. Proceedings of SPIE, 2015, 9354: 93540F.

【10】Bhmer K, Gregory M, Heine F, et al. Laser communication terminals for the European data relay system[J]. Proceedings of SPIE, 2012, 8246: 82460D.

【11】Heine F, Mühlnikel G, Zech H, et al. The Europeandata relay system, high speed laser based data links[C]∥2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), September 8-10, 2014, Livorno, Italy. New York: IEEE, 14699390.

【12】Heine F, Mühlnikel G, Zech H, et al. LCT for the European data relay system: in orbit commissioning of the Alphasat and Sentinel 1A LCTs[J]. Proceedings of SPIE, 2015, 9354: 93540G.

【13】Kolev D R, Takenaka H, Munemasa Y, et al. Overview of international experiment campaign with small optical transponder (SOTA)[C]∥2015 Conference on Space Optical Systems and Applications (ICSOS), October 26-28,2015, New Orleans, LA, USA. New York: IEEE, 15838634.

【14】Phung D H,Samain E, Maurice N, et al. Telecom & scintillation first data analysis for DOMINO - laser communication between SOTA, onboard socrates satellite, and MEO OGS[C]∥2015 Conference on Space Optical Systems and Applications (ICSOS), October 26-28, 2015, New Orleans, LA, USA. New York: IEEE, 15838631.

【15】Takenaka H, Koyama Y, Akioka M, et al. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links[J]. Proceedings of SPIE, 2016, 9739: 973903.

【16】Anees S, Bhatnagar M R. Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system[J]. IET Optoelectronics, 2015, 9(5): 232-240.

【17】Anees S, Bhatnagar M R. Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system[J]. Journal of Optical Communications and Networking, 2015, 7(2): 124-135.

【18】Stotts L B, Andrews L C, Cherry P C,et al. Hybrid optical RF airborne communications[J]. Proceedings of the IEEE, 2009, 97(6): 1109-1127.

【19】Zech H, Heine F,Trndle D, et al. LCT for EDRS: LEO to GEO optical communications at 1. 8 Gbps between Alphasat and Sentinel 1A[J]. Proceedings of SPIE, 2015, 9647: 96470J.

【20】Munemasa Y, Fuse T, Kubo-Oka T, et al. Design status of the development for a GEO-to-ground optical feeder link, HICALI[J]. Proceedings of SPIE, 2018, 10524: 105240F.

【21】Kim I I, Korevaar E J. Availability of free-space optics (FSO) and hybrid FSO/RF systems[J]. Proceedings of SPIE, 2001, 4530: 84-96.

【22】Leitgeb E, Gebhart M, Birnbacher U, et al. High availability of hybrid wireless networks[J]. Proceedings of SPIE, 2004, 5465: 238-250.

【23】Abadi M M, Ghassemlooy Z, Zvanovec S, et al. Dual purpose antenna for hybrid free space Optics/RF communication systems[J]. Journal of Lightwave Technology, 2016, 34(14): 3432-3439.

【24】Shu F, Ao F L, Liao X D. Research on automatic switch conditions forhybrid FSO/RF system[J]. Journal of Guilin University of Electronic Technology, 2008, 28(1): 1-4.
舒芳, 敖发良, 廖新鼎. 混合FSO/RF系统自动切换条件的研究[J]. 桂林电子科技大学学报, 2008, 28(1): 1-4.

【25】Tatarko M, Ovseník L, Turán J. Management of switching in hybrid FSO/RF link[C]∥Proceedings of the 2015 16th International Carpathian Control Conference (ICCC),May 27-30,2015, Szilvasvarad, Hungary. New York: IEEE, 15287384.

【26】Usman M, Yang H C, Alouini M S. Practical switching-based hybrid FSO/RF transmission and its performance analysis[J]. IEEE Photonics Journal, 2014, 6(5): 1-13.

【27】Nock K, Font C, Rupar M. Adaptive transmission algorithms for a hard-switched FSO/RF link[C]∥MILCOM 2016 - 2016 IEEE Military Communications Conference, November 1-3,2016, Baltimore, MD, USA. New York: IEEE, 16546493.

【28】Abadi M M, Ghassemlooy Z, Zvanovec S, et al. Hard switching in hybrid FSO/RF link: Investigating data rate and link availability[C]∥2017 Conference on Communications Workshops (ICC Workshops), May 21-25,2017, Paris, France. New York: IEEE, 17009949.

【29】Lee I E, Ghassemlooy Z, Ng W P, et al. Practical implementation and performance study of a hard-switched hybrid FSO/RF link under controlled fog environment[C]∥2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), July 23-25,2014, Manchester, UK. New York: IEEE, 14684047.

【30】Zhang W Z, Hranilovic S, Shi C. Soft-switching hybrid FSO/RF links using short-length raptor codes: Design and implementation[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1698-1708.

【31】Moradi H, Falahpour M, Refai H H, et al. On the capacity of hybrid FSO/RF links[C]∥IEEE Global Telecommunications Conference, December 6-10, 2010, Miami, FL, USA. New York: IEEE, 2010: 1-5.

【32】Shao J H, Su R M, Yao L, et al. Performance analysis of soft-switching hybrid FSO/RF links using hybrid coding and modulation[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(5): 682-687.
邵军虎, 苏润民, 姚柳, 等. 软切换FSO/RF链路混合编码调制算法性能分析[J]. 电子测量与仪器学报, 2017, 31(5): 682-687.

【33】Shokrollahi A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551-2567.

【34】Abdulhussein A, Oka A, Nguyen T T, et al. Rateless coding for hybrid free-space optical and radio-frequency communication[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 907-913.

【35】Su J, Chen H. Research on technology for switchover of hybrid FSO/RF systems using packet loss rate monitoring[J]. Optical Communication Technology, 2011, 35(10): 28-31.
粟嘉, 陈辉. 基于网络丢包率的混合FSO/RF系统切换技术研究[J]. 光通信技术, 2011, 35(10): 28-31.

【36】Lin X D, Xue C, Liu X Y, et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics, 2012, 5(4): 337-351.
林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学, 2012, 5(4): 337-351.

【37】Liu Z W, Zhou Z Q, Li Z D. Wavefront correction technology based on fuzzy control[J].Laser & Optoelectronics Progress, 2017, 54(3): 030101.
刘章文, 周志强, 李正东. 基于模糊控制的波前校正技术[J]. 激光与光电子学进展, 2017, 54(3): 030101.

【38】Wu J L, Ke X Z. Adaptive optics correction of wavefront sensorless[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030103.
吴加丽, 柯熙政. 无波前传感器的自适应光学校正[J]. 激光与光电子学进展, 2018, 55(3): 030103.

【39】Li G Y, Dou Q Y, Liu Y G, et al. Optical automatic gain-clamped erbium-doped fiber amplifier based on a high-birefringence fiber bragg grating[J]. Acta Optica Sinica, 2006, 26(9): 1308-1312.
李国玉, 窦清影, 刘艳格, 等. 基于高双折射光纤布拉格光栅的自动增益控制掺铒光纤放大器[J]. 光学学报, 2006, 26(9): 1308-1312.

【40】Jia D F, Wang Y Y, Bao H M, et al. Experimental studies on the dual-wavelength optical auto gain clamping EDFA[J]. Acta Photonica Sinica, 2006, 35(10): 1538-1541.
贾东方, 王衍勇, 包焕民, 等. 双波长全光自动增益箝制掺铒光纤放大器的实验研究[J]. 光子学报, 2006, 35(10): 1538-1541.

【41】Bagley Z C. Hybrid optical radio frequency airborne communications[J]. Optical Engineering, 2012, 51(5): 055006.

【42】Crane R. Prediction of attenuation by rain[J]. IEEE Transactions on Communications, 1980, 28(9): 1717-1733.

【43】Nadeem F, Kvicera V, Awan M, et al. Weather effects on hybrid FSO/RF communication link[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1687-1697.

【44】Li J. Research and design of high speed adaptive equalizer[J]. Information & Communications, 2018, 31(5): 67-68.
李嘉. 高速自适应均衡器研究与设计[J]. 信息通信, 2018, 31(5): 67-68.

【45】Chen Q, Yang X P, Da X Y, et al. A fast super-exponential iteration decision feedback blind equalization algorithm for carrier recovery of aeronautical channel[J]. Journal of Central South University (Science and Technology), 2013, 44(9): 3707-3712.
陈强, 杨霄鹏, 达新宇, 等. 一种快速收敛的航空信道载波恢复判决反馈盲均衡算法[J]. 中南大学学报(自然科学版), 2013, 44(9): 3707-3712.

【46】Zhao Z W, Zhang M G, Wu Z S. Analytic specific attenuation model for rain for use in prediction methods[J]. International Journal of Infrared & Millimeter Waves, 2001, 22(1): 113-120.

【47】Oguchi T. Electromagnetic wave propagation and scattering in rain and other hydrometeors[J]. Proceedings of the IEEE, 1983, 71(9): 1029-1078.

【48】Wu C J, Yan C X, Gao Z L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680.
吴从均, 颜昌翔, 高志良. 空间激光通信发展概述[J]. 中国光学, 2013, 6(5): 670-680.

【49】Chang S, Tong S F, Jiang H L, et al. Optical phase-locked loop technology in inter-satellite high-speed coherent laser communication systems[J]. Acta Optica Sinica, 2017, 37(2): 0206004.
常帅, 佟首峰, 姜会林,等. 星间高速相干激光通信系统中的光学锁相环技术[J]. 光学学报, 2017, 37(2): 0206004.

【50】Zeng F, Gao S J, San X G, et al. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1): 65-73.
曾飞, 高世杰, 伞晓刚, 等. 机载激光通信系统发展现状与趋势[J]. 中国光学, 2016, 9(1): 65-73.

【51】Li S M, Zhang Y Q. Annular facula detection and error compensation of four-quadrant photoelectric detector in space laser communication[J]. Chinese Journal of Lasers, 2017, 44(11): 1106005.
李生民, 张圆清. 空间激光通信中四象限光电探测器环形光斑检测及误差补偿[J]. 中国激光, 2017,44(11): 1106005.

【52】Chen S J, Zhang L, Wang J Y. Effects of digital to analog converter resolution on ATM system tracking accuracy[J]. Chinese Journal of Lasers, 2017, 44(8): 0806004.
陈少杰, 张亮, 王建宇. 数模转换器分辨率对捕获、跟踪、瞄准系统跟踪精度的影响[J]. 中国激光, 2017, 44(8): 0806004.

引用该论文

Ding Liang,Wu Zhiyong,Gu Yucong,Gao Zechao,Hu Jintian,Ma Shuang. Key Technologies of Wireless Laser and Radio Frequency Complementary Communication System[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060004

丁良,吴志勇,谷雨聪,高则超,胡金田,马爽. 无线激光与射频互补通信系统的关键技术[J]. 激光与光电子学进展, 2019, 56(6): 060004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF