首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:60001--1)

AlGaN基深紫外发光二极管空穴注入效率的提高途径

Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

目前,发光波长短于360 nm的深紫外发光二极管 (DUV LEDs) 的外量子效率 (EQE) 普遍低于10%。一方面,基于高AlN组分AlGaN材料量子阱的出光中存在大量的横磁 (TM) 模式的偏振光,这极大程度上降低了DUV LEDs器件的光提取效率 (LEE);另一方面,受限于现阶段AlGaN材料的外延生长水平,DUV LEDs器件的晶体质量普遍比较差,增加了有源区内非辐射复合率,造成DUV LEDs器件内量子效率 (IQE) 的衰减。除此之外,载流子注入效率也严重影响着DUV LEDs器件的IQE,尤其是空穴注入效率。为此,研究人员开展了大量的研究来提高空穴注入效率,从而改善DUV LEDs器件的EQE。着重总结探讨了近年来提高DUV LEDs器件空穴注入效率的诸多措施,深刻揭示了其中的物理机理,对改善DUV LEDs的器件性能具有重要的意义。

Abstract

Currently, the external quantum efficiency (EQE) for deep ultraviolet light-emitting diodes (DUV LEDs) with emission wavelengths shorter than 360 nm is generally lower than 10%. On one hand, the transverse-magnetic (TM) polarized light dominates the light emission from the AlN-rich AlGaN based quantum wells, which strongly reduces the light-extraction efficiency (LEE) for DUV LEDs. On the other hand, limited by the current hetero-epitaxial growth technologies for AlGaN materials, the crystal quality for DUV LEDs is still poor, which increases the non-radiative recombination rate in the active region, thereby causing the reduction of the internal quantum efficiency (IQE) for DUV LEDs. Besides, the carrier injection efficiency, especially the hole injection efficiency, also strongly influences the IQE for DUV LEDs. Thus, the researchers have made extensive efforts to increase the hole injection efficiency and thus improve the EQE for DUV LEDs. The recently proposed approaches for the improvement of the hole injection efficiency for DUV LEDs are reviewed and discussed. Moreover, the underlying physical mechanisms are disclosed in the in-depth level. These are important for the improvement of the device performances for DUV LEDs.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN312+.8

DOI:10.3788/lop56.060001

所属栏目:综述

基金项目:国家自然科学基金(51502074)、河北省自然科学基金(F2017202052)、天津市自然科学基金(16JCYBJC16200)、人社部留学人员科技活动项目择优资助优秀类(CG2016008001)、河北省百人计划项目(E2016100010)、河北省高校百名优秀创新人才支持计划(SLRC2017032)

收稿日期:2018-09-11

修改稿日期:2018-10-28

网络出版日期:2018-11-13

作者单位    点击查看

田康凯:河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401天津市电子材料和器件重点实验室, 天津 300401
楚春双:河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401天津市电子材料和器件重点实验室, 天津 300401
毕文刚:河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401天津市电子材料和器件重点实验室, 天津 300401
张勇辉:河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401天津市电子材料和器件重点实验室, 天津 300401
张紫辉:河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401天津市电子材料和器件重点实验室, 天津 300401

联系人作者:张紫辉(zh.zhang@hebut.edu.cn); 张勇辉(zhangyh@hebut.edu.cn);

【1】Wang J X, Yan J C, Guo Y N, et al. Recent progress of research on III-nitride deep ultraviolet light-emitting diode[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(6): 067303.

【2】Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides[J]. Nature Photonics, 2008, 2(2): 77-84.

【3】Kim K H, Fan Z Y, Khizar M, et al. AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers[J]. Applied Physics Letters, 2004, 85(20): 4777-4779.

【4】Li L P, Zhang Y H, Xu S, et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes[J]. Materials, 2017, 10(10): 1221.

【5】Fujioka A, Asada K, Yamada H, et al. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics[J]. Semiconductor Science and Technology, 2014, 29(8): 084005.

【6】Chen Q, Zhang H X, Dai J N, et al. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle[J]. IEEE Photonics Journal, 2018, 10(4): 6100807.

【7】Hirayama H, Tsukada Y, MaedaT, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer[J]. Applied Physics Express, 2010, 3(3): 031002.

【8】Nam K B, Li J, Nakarmi M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters[J]. Applied Physics Letters, 2004, 84(25): 5264-5266.

【9】Zhang J, Zhao H P, Tansu N. Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers[J]. Applied Physics Letters, 2010, 97(11): 111105.

【10】Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 2003, 94(6): 3675-3696.

【11】Lu H M, Yu T J, Yuan G C, et al. Valence subband coupling effect on polarization of spontaneous emissions from Al-rich AlGaN/AlN Quantum Wells[J]. Optics Express, 2012, 20(25): 27384-27392.

【12】Wang W Y, Lu H M, Fu L, et al. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure[J]. Optics Express, 2016, 24(16): 18176-18183.

【13】Ryu H Y, Choi I G, Choi H S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes[J]. Applied Physics Express, 2013, 6(6): 062101.

【14】Long H L, Wu F, Zhang J, et al. Anisotropic optical polarization dependence on internal strain in AlGaN epilayer grown on AlxGa1-xN templates[J]. Journal of Physics D: Applied Physics, 2016, 49(41): 415103.

【15】Long H L, Wang S, Dai J N, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD[J]. Optics Express, 2018, 26(2): 680-686.

【16】Fu D, Zhang R, Wang B G, et al. Ultraviolet emission efficiencies of AlxGa1-xN films pseudomorphically grown on AlyGa1-yN template (x

【17】Su C Y, Tsai M C, Chou K P, et al. Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well[J]. Optics Express, 2017, 25(22): 26365-26377.

【18】Taniyasu Y, Kasu M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices[J]. Applied Physics Letters, 2011, 99(25): 251112.

【19】Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes[J]. Applied Physics Letters, 2017, 110(7): 071103.

【20】Northrup J E, Chua C L, Yang Z, et al. Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells[J]. Applied Physics Letters, 2012, 100(2): 021101.

【21】Sharma T K, Naveh D, Towe E. Strain-driven light-polarization switching in deep ultraviolet nitride emitters[J]. Physical Review B, 2011, 84(3): 035305.

【22】Reich C, Guttmann M, Feneberg M, et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes[J]. Applied Physics Letters, 2015, 107(14): 142101.

【23】Hu Y L, Liu D L, Wang B, et al. Characteristics of light extraction for surface-microcavity photonic crystal LED[J]. Acta Optica Sinica, 2017, 37(6): 0623004.
胡永禄, 刘道柳, 王博, 等. 表面微腔光子晶体LED的光提取特性[J]. 光学学报, 2017, 37(6): 0623004.

【24】Liu S R, Wang L, Sun Y J, et al. Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J]. Acta Optica Sinica, 2018, 38(1): 0122001.
刘顺瑞, 王丽, 孙艳军, 等. 利用截头圆锥形仿生蛾眼结构提高LED光提取效率[J]. 光学学报, 2018, 38(1): 0122001.

【25】Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.

【26】Imura M, Nakano K, Fujimoto N, et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2007, 46(4A): 1458-1462.

【27】Follstaedt D M, Lee S R, Provencio P P, et al. Relaxation of compressively-strained AlGaN by inclined threading dislocations[J]. Applied Physics Letters, 2005, 87(12): 121112.

【28】Ren Z, Sun Q, Kwon S Y, et al. Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes[J]. Applied Physics Letters, 2007, 91(5): 051116.

【29】Tian K K, Chen Q, Chu C S, et al. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2018, 12(1): 1700346.

【30】Dong P, Yan J C, Wang J X, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.

【31】Zhang L S, Xu F J, Wang J M, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography[J]. Scientific Reports, 2016, 6: 35934.

【32】Zhang X, Xu F J, Wang J M, et al. Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low- and high-temperature alternation technique[J]. CrystEngComm, 2015, 17(39): 7496-7499.

【33】Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers[J]. Journal of Crystal Growth, 2007, 298: 257-260.

【34】Mogilatenko A, Küller V, Knauer A, et al. Defect analysis in AlGaN layers on AlN templates obtained by epitaxial lateral overgrowth[J]. Journal of Crystal Growth, 2014, 402: 222-229.

【35】Park J S, Kim J K, Cho J, et al. Review: Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency[J]. ECS Journal of Solid State Science and Technology, 2017, 6(4): Q42-Q52.

【36】Hirayama H, Fujikawa S, Noguchi N, et al. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire[J]. Physica Status Solidi (a), 2009, 206(6): 1176-1182.

【37】Ryu H Y, Kim H S, Shim J I. Rate equation analysis of efficiency droop in InGaN light-emitting diodes[J]. Applied Physics Letters, 2009, 95(8): 081114.

【38】Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. Physica Status Solidi (a), 2010, 207(10): 2217-2225.

【39】Zhang Z H, Zhang Y H, Bi W G, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates[J]. Physica Status Solidi (a), 2016, 213(12): 3078-3102.

【40】Schubert E F. Light Emitting Diodes[M]. 2nd ed. England: Cambridge University Press, 2006.

【41】Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect[J]. Physical Review Letters, 1984, 53(22): 2173.

【42】Schwarz U T, Braun H, Kojima K, et al. Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells[J]. Applied Physics Letters, 2007, 91(12): 123503.

【43】Chichibu S F, Yamaguchi H, Zhao L, et al. Improved characteristics and issues of m-plane InGaN films grown on low defect density m-plane freestanding GaN substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 93(15): 151908.

【44】Masui H, Nakamura S, Denbaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges[J]. IEEE Transactions on Electron Devices, 2010, 57(1): 88-100.

【45】Kim D S, Lee S, Young Kim D, et al. Highly stable blue-emission in semipolar (11-22) InGaN/GaN multi-quantum well light-emitting diode[J]. Applied Physics Letters, 2013, 103(2): 021111.

【46】Chang J Y, Kuo Y K. Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes[J]. Optics Letters, 2012, 37(9): 1574-1576.

【47】Ryou J H, Limb J, Lee W, et al. Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes[J]. IEEE Photonics Technology Letters, 2008, 20(21): 1769-1771.

【48】Fiorentini V, Bernardini F, Della Sala F, et al. Effects of macroscopic polarization in III-V nitride multiple quantum wells[J]. Physical Review B, 1999, 60(12): 8849.

【49】Zhang Z H, Tan S T, Ju Z G, et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes[J]. Journal of Display Technology, 2013, 9(4): 226-233.

【50】Zhang Z H, Liu W, Ju Z G, et al. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers[J]. Applied Physics Letters, 2014, 104(24): 243501.

【51】Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures[J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.

【52】Katsuragawa M, Sota S, Komori M, et al. Thermal ionization energy of Si and Mg in AlGaN[J]. Journal of Crystal Growth, 1998, 189-190: 528-531.

【53】Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 60-64.

【54】Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping[J]. Applied Physics Letters, 1996, 69(24): 3737-3739.

【55】Kumakura K, Makimoto T, Kobayashi N. Efficient hole generation above 1019 cm-3 in Mg-doped InGaN/GaN superlattices at room temperature[J]. Japanese Journal of Applied Physics, 2000, 39(3AB): L195-L196.

【56】Jo M, Maeda N, Hirayama H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer[J]. Applied Physics Express, 2016, 9(1): 012102.

【57】Li L P, Shi Q, Tian K K, et al. A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes[J]. Physica Status Solidi (a), 2017, 214(6): 1600937.

【58】Zhang Z H, Li L P, Zhang Y H, et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes[J]. Optics Express, 2017, 25(14): 16550-16559.

【59】Zhang Z H, Huang Chen S W, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7): 1846-1850.

【60】Neugebauer S, Hoffmann M P, Witte H, et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications[J]. Applied Physics Letters, 2017, 110(10): 102104.

【61】Jeon S R, Song Y H, Jang H J, et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions[J]. Applied Physics Letters, 2001, 78(21): 3265-3267.

【62】Krishnamoorthy S, Nath D N, Akyol F, et al. Polarization-engineered GaN/InGaN/GaN tunnel diodes[J]. Applied Physics Letters, 2010, 97(20): 203502.

【63】Zhang Z H, Tiam Tan S, Kyaw Z, et al. InGaN/GaN light-emitting diode with a polarization tunnel junction[J]. Applied Physics Letters, 2013, 102(19): 193508.

【64】Krishnamoorthy S, Akyol F, Rajan S. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes[J]. Applied Physics Letters, 2014, 105(14): 141104.

【65】Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures[J]. Applied Physics Letters, 2002, 80(7): 1204-1206.

【66】Li L P, Zhang Y H, Tian K K, et al. Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes[J]. Physica Status Solidi (a), 2017, 214(12): 1700624.

【67】Zhang Z H, Tan S T, Liu W, et al. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer[J]. Optics Express, 2013, 21(4): 4958-4969.

【68】Zhu H T, Fu R L, Fei M, et al. Optical and thermal performance of LED light source packaged by Al/Al2O3 composite substrate[J]. Acta Optica Sinica, 2017, 37(10): 1023002.
朱海涛, 傅仁利, 费盟, 等. 铝/氧化铝复合基板封装的LED光源的光热特性[J]. 光学学报, 2017, 37(10): 1023002.

【69】Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2016, 52(4): 3300105.

【70】Zhang Z H, Liu W, Tan S T, et al. A hole accelerator for InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 2014, 105(15): 153503.

【71】Zhang Z H, Zhang Y H, Bi W G, et al. On the hole accelerator for III-nitride light-emitting diodes[J]. Applied Physics Letters, 2016, 108(15): 151105.

【72】Yun Y Z, Yi A Y. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer[J]. Applied Physics Letters, 2011, 99(22): 221103.

【73】Li Y, Chen S C, Tian W, et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with al content graded AlGaN electron blocking layers[J]. IEEE Photonics Journal, 2013, 5(4): 8200309.

【74】Zhang Z H, Huang Chen S W, Chu C S, et al. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high mg doping efficiency[J]. Nanoscale Research Letters, 2018, 13: 122.

【75】Su C Y, Tu C G, Liu W H, et al. Enhancing the hole-injection efficiency of a light-emitting diode by increasing mg doping in the p-AlGaN electron-blocking layer[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3226-3233.

【76】Zhang Z H, Ju Z G, Liu W, et al. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering[J]. Optics Letters, 2014, 39(8): 2483-2486.

【77】Chu C S, Tian K K, Fang M Q, et al. Structural design and optimization of deep-ultraviolet light-emitting diodes with AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer[J]. Journal of Nanophotonics, 2018, 12(4): 043503.

【78】Chu C S, Tian K K, Fang M Q, et al. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes[J]. Superlattices and Microstures, 2018, 113: 472-477.

【79】Tian K K, Chu C S, Shao H, et al. On the polarization effect of the p-EBL/p-AlGaN/p-GaN structure for AlGaN-based deep-ultraviolet light-emitting diodes[J]. Superlattices and Microstructures, 2018, 122: 280-285.

【80】Meyaard D S, Lin G B, Ma M, et al. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection[J]. Applied Physics Letters, 2013, 103: 201112.

【81】Kim S J, Kim T G. Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths[J]. Physica Status Solidi (a), 2014, 211(3): 656-660.

【82】Tsai M C, Yen S H, Kuo Y K. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers[J]. Applied Physics Letters, 2011, 98(11): 111114.

【83】Zhang Z H, Chu C S, Chiu C H, et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections[J]. Optics Letters, 2017, 42(21): 4533-4536.

引用该论文

Tian Kangkai,Chu Chunshuang,Bi Wengang,Zhang Yonghui,Zhang Zihui. Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060001

田康凯,楚春双,毕文刚,张勇辉,张紫辉. AlGaN基深紫外发光二极管空穴注入效率的提高途径[J]. 激光与光电子学进展, 2019, 56(6): 060001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF