首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:60101--1)

弱湍流条件下无人机逆向调制激光通信系统的链路性能

Link Performance of Unmanned Aerial Vehicle Retro-Modulating Optical Communication System Under Weak Turbulence Condition

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了弱湍流条件下无人机逆向调制激光通信系统的链路传输性能,并进行了仿真验证。考虑指向误差对系统的影响,利用高斯-厄米特积分方法推导出系统双向信道衰落概率密度函数和其累积分布函数的闭合表达式,进一步推导出系统平均误码率和中断概率的闭合表达式。研究结果表明,在弱湍流和指向误差的共同影响下,入射角度、调制阶数和角偶棱镜材料折射率对系统误码性能影响较大;当发散角为3~10 μrad时,系统误码率会达到一个最优值;当发散角分别为6,8,10 μrad时,在较高信噪比阈值条件下系统中断概率可降到10-9数量级。

Abstract

The link transmission performance of the unmanned aerial vehicle (UAV) retro-modulating optical communication system under the weak turbulence condition is studied and verified by simulation. The influence of pointing error on the system is considered, and the Gauss-Hermite integral method is used to derive the bidirectional channel fading probability density function and the closed expression of its cumulative distribution function for this system. The closed expressions of system average bit error rate and the outage probability are further derived. The research results show that under the joint influences of weak turbulence and pointing error, and the incident angle, modulation order and refractive index of the corner cube retro-reflector have great influences on the error performance of this system. When the divergence angle is 3-10 μrad, the system error rate reaches an optimal value. When the divergence angles are 6, 8 and 10 μrad, respectively, the outage probability is reduced to 10-9 orders of magnitude under the condition of relatively high signal-to-noise ratio threshold.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN92

DOI:10.3788/lop56.060101

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金(61571461)

收稿日期:2018-09-12

修改稿日期:2018-10-06

网络出版日期:2018-10-12

作者单位    点击查看

陈阳:空军工程大学信息与导航学院, 陕西 西安 710077
赵尚弘:空军工程大学信息与导航学院, 陕西 西安 710077
赵静:空军工程大学信息与导航学院, 陕西 西安 710077
王翔:空军工程大学信息与导航学院, 陕西 西安 710077

联系人作者:陈阳(chenyangbabm@126.com)

【1】Achour M. Free-space optical communication by retromodulation: Concept, technologies, and challenges[J]. Proceedings of SPIE, 2004, 5614: 52-64.

【2】Majumdar A K. Advanced free space optics (FSO)[M].New York: Springer, 2015.

【3】Mahon R, Moore C I, Ferraro M, et al. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links[J]. Applied Optics, 2012, 51(25): 6147-6158.

【4】Peter G G, William S R, Mahon R, et al. Modulating retro-reflector lasercom systems at the Naval Research Laboratory[C]∥MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 31 October-3 November 2010, San Jose, CA, USA. New York: IEEE, 1601-1606.

【5】Carrasco-Casado A, Vergaz R. Design and early development of a UAV terminal and a ground station for laser communications[J]. Proceedings of SPIE, 2011, 8184: 81840E.

【6】Yang G W, Li Z P, Bi M H, et al. Channel modeling and performance analysis of modulating retroreflector FSO systems under weak turbulence conditions[J]. IEEE Photonics Journal, 2017, 9(2): 1-10.

【7】Yang G W, Li C Y, Li J, et al. Performance analysis of full duplex modulating retro-reflector free-space optical communications over single and double gamma-gamma fading channels[J]. IEEE Transactions on Communications, 2018, 66(8): 3597-3609.

【8】Ding D Q, Ke X Z. Performance of asymmetrical retro-reflected free space optical link[J]. Journal of Applied Sciences, 2010, 28(4): 337-341.
丁德强, 柯熙政. 非对称回复反射自由空间光通信链路性能[J]. 应用科学学报, 2010, 28(4): 337-341.

【9】Ren J Y, Sun H Y, Zhao Y Z, et al. Analysis on distance and BER of modulating retro-reflector laser communication[J]. Laser & Infrared, 2016, 46(10): 1206-1210.
任建迎, 孙华燕, 赵延仲, 等. 逆向调制激光通信作用距离及误码率分析[J]. 激光与红外, 2016, 46(10): 1206-1210.

【10】Ren J Y, Sun H Y, Zhang L X. Free space optical communication technology based on cat-eye modulating retro-reflector[J]. Laser & Infrared, 2017, 47(1): 98-102.
任建迎, 孙华燕, 张来线. “猫眼”逆向调制自由空间光通信技术[J]. 激光与红外, 2017, 47(1): 98-102.

【11】Zhang T Q, Fan G H, Zhang L X. Analysis on the BER of atmosphere laser communication with modulating retro-reflector array[J]. Laser & Infrared, 2018, 48(5): 560-564.
张天齐, 樊桂花, 张来线. 逆向调制阵列大气激光通信的误码率分析[J]. 激光与红外, 2018, 48(5): 560-564.

【12】Wang X Y, Feng X L, Zhang P, et al. Single-source bidirectional free-space optical communications using reflective SOA-based amplified modulating retro-reflection[J]. Optics Communications, 2017, 387: 43-47.

【13】Farid A A, Hranilovic S. Outage capacity optimization for free-space optical links with pointing errors[J]. Journal of Lightwave Technology, 2007, 25(7): 1702-1710.

【14】Gilbreath G C, Rabinovich W S, Meehan T J, et al. Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles[J]. Optical Engineering, 2001, 40(7): 1348-1356.

引用该论文

Chen Yang,Zhao Shanghong,Zhao Jing,Wang Xiang. Link Performance of Unmanned Aerial Vehicle Retro-Modulating Optical Communication System Under Weak Turbulence Condition[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060101

陈阳,赵尚弘,赵静,王翔. 弱湍流条件下无人机逆向调制激光通信系统的链路性能[J]. 激光与光电子学进展, 2019, 56(6): 060101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF