首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:61006--1)

基于多维局部二值模式和XGBoost的轻量谱线删除法

Lightweight Staff Removal Method Based on Multidimensional Local Binary Pattern and XGBoost

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于在手写乐谱中搜索谱线位置比较困难,为提高乐谱谱线删除算法的稳健性,提出了一种基于多维局部二值模式识别和XGBoost模型的手写乐谱谱线删除方法。根据乐谱图像的特点,设计并改进局部二值模式算子,提取乐谱图像中的多维局部二值模式特征算子,组成高维特征向量,再选择最优的XGBoost模型来识别乐谱谱线位置,进而删除谱线。研究结果表明,该方法在测试数据上的F-measure为97.19%,说明其具有很高的准确率和召回率;而在三个不同子测试集上的F-measure分别为96.43%,98.36%和96.79%,说明其具有很好的稳健性。相比已有的轻量谱线删除算法,该方法的F-measure有所提升。

Abstract

It is difficult to search the spectrum line in handwritten music spectrum, so in order to improve the robustness of the handwritten music spectral line deletion algorithm, a method based on multidimensional local binary pattern recognition and XGBoost model is proposed. The local binary pattern operator is designed and improved based on the characteristics of music score image, and from which the multidimension local binary pattern feature operator is extracted. Therefore, a high-dimensional feature vector is formed and the optimal XGBoost model is selected to identify the music spectral line location, then the line is deleted. The research results show that F-measure of this method is 97.19% on the test data, which illustrates that the method has a high accuracy and recall rate. F-measure is 96.43%, 98.36% and 96.79% respectively on three different test subsets, which shows that it has good robustness. Compared with existing lightweight spectrum line deletion algorithm, the F-measure of this method is relatively improved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/LOP56.061006

所属栏目:图像处理

基金项目:国家自然科学基金(61471263)、天津市自然科学基金(16JCZDJC31100)

收稿日期:2018-09-26

修改稿日期:2018-10-17

网络出版日期:2018-10-25

作者单位    点击查看

吴天龙:天津大学微电子学院, 天津 300072
李锵:天津大学微电子学院, 天津 300072
关欣:天津大学微电子学院, 天津 300072

联系人作者:关欣(guanxin@tju.edu.cn)

【1】Rebelo A, Fujinaga I, Paszkiewicz F, et al. Optical music recognition: state-of-the-art and open issues[J]. International Journal of Multimedia Information Retrieval, 2012, 1(3): 173-190.

【2】Fujinaga I. Staff detection and removal[M/OL]∥George S E. Visual perception of music notation: on-line and off line recognition. 2004: 1-39.[2018-09-26]. https:∥www.igi-global.com/gateway/chapter/31053.

【3】Szwoch M. A Robust Detector for Distorted Music Staves[C]∥Gagalowicz A, Philips W. Computer analysis of images and patterns. CAIP 2005. Lecture notes in computer science. Berlin, Heidelberg, Springer, 2005, 3691: 701-708.

【4】Miyao H. Stave Extractionfor printed music scores[M]∥Yin H, Allinson N, Freeman R, et al. Intelligent data engineering and automated learning-IDEAL 2002. Lecture notes in computer science. Berlin, Heidelberg: Springer, 2002, 2412: 562-568.

【5】Bainbridge D, Bell T C. Dealing with superimposed objects in optical music recognition[C]∥6th International Conference on Image Processing and its Applications. July 17,1997, Dublin, Ireland: IET Digital Library, 1997: 756-760.

【6】Roach J W, Tatem J E. Using domain knowledge in low-level visual processing to interpret handwritten music: an experiment[J]. Pattern Recognition, 1988, 21(1): 33-44.

【7】Carter N P, Bacon R A. Automatic recognition of printed music[M]∥Baird H S, Bunke H, Yamamoto K. Structured document image analysis. Berlin, Heidelberg: Springer, 1992: 456-465.

【8】Ng K. Music manuscript tracing[C]∥Blostein D, Kwon Y B. Graphics recognition algorithms and applications. GREC 2001. Lecture notes in computer science. Berlin, Heidelberg: Springer, 2001, 2390: 330-342.

【9】Dalitz C, Droettboom M, Pranzas B, et al. A comparative study of staff removal algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 753-766.

【10】dos Santos Cardoso J, Capela A, Rebelo A, et al. Staff detection with stable paths[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 1134-1139.

【11】Su B L, Lu S J, Pal U, et al. An effective staff detection and removal technique for musical documents[C]∥10th IAPR International Workshop on Document Analysis Systems, March 27,2012, Gold Cost, QLD, Australia. New York: IEEE, 2012: 160-164.

【12】Géraud T. A morphological method for music score staff removal[C]∥IEEE International Conference on Image Processing (ICIP), Oct. 27, 2014, Paris, France. New York: IEEE, 2014: 2599-2603

【13】Calvo-Zaragoza J, Micó L, Oncina J. Music staff removal with supervised pixel classification[J]. International Journal on Document Analysis and Recognition, 2016, 19(3): 211-219.

【14】Montagner I S, Hirata N S T, Hirata R. Staff removal using image operator learning[J]. Pattern Recognition, 2017, 63: 310-320.

【15】Guo C C, Yu F Q, Chen Y. Image semantic segmentation based on convolutional neural network feature and improved superpixel matching[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081005.
郭呈呈, 于凤芹, 陈莹. 基于卷积神经网络特征和改进超像素匹配的图像语义分割[J]. 激光与光电子学进展, 2018, 55(8): 081005.

【16】Calvo-Zaragoza J, Pertusa A, Oncina J. Staff-line detection and removal using a convolutional neural network[J]. Machine Vision and Applications, 2017, 28(5/6): 665-674.

【17】Aguilar F D J, Hirata N S T. Image operator learning coupled with CNN classification and its application to staff line removal[C]∥14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Nov. 9, 2017, Kyoto, Japan. New York: IEEE, 2017: 53-58.

【18】Gallego A J, Calvo-Zaragoza J. Staff-line removal with selectional auto-encoders[J]. Expert Systems with Applications, 2017, 89: 138-148.

【19】Visaniy M, Kieu V C, Fornés A, et al. The ICDAR 2013 music scores competition: staff removal[C]∥12th International Conference on Document Analysis and Recognition (ICDAR 2013), Aug, 2013, Washington DC, USA. New York: IEEE, 2013: 1407-1411.

【20】Yang H X, Chen Y, Zhang F, et al. Face recognition based on improved gradient local binary pattern[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061004.
杨恢先, 陈永, 张翡, 等. 基于改进梯度局部二值模式的人脸识别[J]. 激光与光电子学进展, 2018, 55(6): 061004.

【21】Ye Z, Bai L. Hyperspectral image classification based on principal component analysis and local binary patterns[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111006.
叶珍, 白璘. 基于主成分分析与局部二值模式的高光谱图像分类[J]. 激光与光电子学进展, 2017, 54(11): 111006.

【22】Meng F A, Li Q, Shen Y T, et al. Staff detection and removal based on local binary patterns[J]. Journal of Frontiers of Computer Science & Technology, 2017, 11(12): 2015-2022.
孟凡奥, 李锵, 申一汀, 等. 基于局部二进制模式的乐谱谱线检测与删除[J]. 计算机科学与探索, 2017, 11(12): 2015-2022.

【23】Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 13, 2016, San Francisco, California, USA. New York: ACM, 2016: 785-794.

【24】Ojala T, Pietikinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.

引用该论文

Wu Tianlong,Li Qiang,Guan Xin. Lightweight Staff Removal Method Based on Multidimensional Local Binary Pattern and XGBoost[J]. Laser & Optoelectronics Progress, 2019, 56(6): 061006

吴天龙,李锵,关欣. 基于多维局部二值模式和XGBoost的轻量谱线删除法[J]. 激光与光电子学进展, 2019, 56(6): 061006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF