QEPAS系统中石英音叉模态仿真计算与研究
Modal Simulation Calculation and Research of Tuning Fork Based on QEPAS System
摘要
对石英音叉增强型光声光谱(QEPAS)系统中常用的石英音叉进行了有限元模态计算, 获得石英音叉前6阶振型与模态频率, 认知了第4阶对称摆动振型为有效振动, 利用单因素法分析了石英音叉的音臂长度l1、 音臂宽度w1、 音臂厚度t、 音臂切角θ、 音臂圆孔直径d及音臂圆孔高度h对低阶有效共振频率(Fre)的影响, 敏感度依次为: l1> w1>d>θ>t>h, 考虑实际设计情形, 筛选出了l1, w1, d与h四个石英音叉设计变量, 采用Box-Behnken实验设计方案与RSM(response surface methodology)方法, 以Fre为函数目标, 建立l1, w1, d与h的二次回归响应面模型, 得到了参数之间的交互作用, 利用Design-Expert软件对响应面模型进行设计参数反求, 结果表明, 在15 000 Hz≤Fre≤25 000 Hz计算区域内误差较小, 基本满足QEPAS系统的计算需求, 所提出的研究与设计方法具有一定通用性, 可为QEPAS系统中石英音叉结构参数设计提供参考。
Abstract
The finite element modes of the quartz tuning fork in the Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) system were calculated and the first 6 modes and modal frequencies of the quartz tuning fork were obtained. The 4th order symmetrically oscillating vibration mode was recognized as an effective vibration. Single factor method was used to analyze the effects of fork’s arm length l1, fork’s arm width w1, fork’s arm thickness t, fork’s arm cutting angle θ, fork’s arm diameter d and fork’s arm round hole height h on low effective resonance frequency (Fre). The results of the sensitivity sensitivity were as follows: l1>w1>d>θ>t>h. Considering the actual design situation, four design parameters of quartz tuning fork l1, w1, d and h were screened. Using Box-Behnken experimental design and RSM (Response Surface Methodology) method, Fre was set as a function target to establish l1, w1, d and h quadratic regression response surface model, and get the interaction between the parameters. The Design-Expert software was used to inverse the design parameters of the response surface model. The results showed that the error in the calculation area of 15 000 Hz≤Fre≤25 000 Hz is small, and basically meets the calculation requirements of QEPAS system. The proposed research and design methods have some generality, which can provide references for the design of quartz tuning fork structure in QEPAS system.
中图分类号:Q433.1
DOI:10.3964/j.issn.1000-0593(2019)01-0031-08
基金项目:国家重点研发计划项(2017YFC0209700), 国家自然科学基金项目(41730103, 41575030, 41475023)资)
收稿日期:2017-12-12
修改稿日期:2018-04-06
网络出版日期:--
作者单位 点击查看
曹 渊:中国科学技术大学, 安徽 合肥 230031
刘 锟:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
曹亚南:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031
田 兴:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031
陈家金:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031
杨 刚:中国科学技术大学, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031
联系人作者:程刚(chgmech@mail.ustc.edu.cn)
备注:程 刚, 1986年生, 中国科学院安徽光学精密机械研究所博士研究生
【1】Kosterev A A, Tittel F K, Curl R F, et al. Optics Letters, 2002, 27(21): 1902.
【2】Ma Y, Yu X, Yu G, et al. Applied Physics Letters, 2015, 107(2): 1993.
【4】Dong L, Wu H, Zheng H, et al. Optics Letters, 2014, 39(8): 2479.
【5】Zheng H, Dong L, Sampaolo A, et al. Applied Physics Letters, 2016, 109(11): 1902.
【6】Wu H, Yin X, Dong L, et al. Applied Physics Letters, 2017, 110(12): 121104.
【7】Liu K, Guo X, Yi H, et al. Optics Letters, 2009, 34(10): 1594.
【8】Yi H, Liu K, Chen W, et al. Optics Letters, 2011, 36(4): 481.
【9】WANG Gui-shi, YI Hong-ming, CAI Ting-dong, et al(王贵师, 易红明, 蔡廷栋, 等). Acta Physica Sinica(物理学报), 2012, 61(12): 120701.
【10】ZHANG Zhou-qiang, JIA Shu-hai, MA Bin-shan(张周强, 贾书海, 马斌山). Journal of Xi’an Jiaotong University(西安交通大学学报), 2014, 48(7): 96.
【11】GU Hai-ming, ZHOU Yong-jun(顾海明, 周勇军). Theory and Application of Mechanical Vibration(机械振动理论与应用). Nanjing: Southeast University Press(南京: 东南大学出版社), 2007.
【12】Usher M B. Catena, 2001, 42(2-4): 375.
【13】HE-Wei, XUE Wei-dong, TANG Bin(何 为, 薛卫东, 唐 斌). Optimizing Experimental Design Method and Data Analysis(优化实验设计方法及数据分析). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2012. 218.
引用该论文
CHENG Gang,CAO Yuan,LIU Kun,CAO Ya-nan,TIAN Xing,CHEN Jia-jin,YANG Gang,GAO Xiao-ming. Modal Simulation Calculation and Research of Tuning Fork Based on QEPAS System[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 31-38
程 刚,曹 渊,刘 锟,曹亚南,田 兴,陈家金,杨 刚,高晓明. QEPAS系统中石英音叉模态仿真计算与研究[J]. 光谱学与光谱分析, 2019, 39(1): 31-38
被引情况
【1】张蕾蕾,刘家祥,朱之贞,方勇华,吴越,杨文康,陶孟琪,宁志强. 基于石英增强光声光谱的H2S痕量气体检测研究. 激光与光电子学进展, 2019, 56(21): 213001--1