首页 > 论文 > 光子学报 > 48卷 > 2期(pp:201002--1)

一种改进的次谐波大气湍流相位屏模拟方法

Improved Subharmonic Method for Simulation of Atmospheric Turbulence Phase Screen

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种改进的次谐波大气湍流相位屏模拟方法, 通过对低频相位屏的采样方式进行设计, 能够充分地补偿相位屏中的低频信息.利用该方法对符合Kolmogorov理论的大气湍流相位屏进行数值模拟, 并结合相位结构函数和相对误差函数对所提方法的准确性进行验证, 分析谐波次数和采样点数对模拟相位屏的影响.此外, 还将改进后的次谐波法与经典的功率谱反演法、Zernike多项式法、分形法及改进前的次谐波法进行了对比, 结果表明:改进后的次谐波法对应的相位结构函数与Kolmogorov湍流理论值最符合, 即利用此方法生成的相位屏最准确.

Abstract

An improved subharmonic method to generate atmospheric turbulence phase screen was introduced. The low frequency phase screen is specifically designed to quickly achieve adequately sampling in low frequency portion of power spectrum. To evaluate the accuracy of the proposed method, the phase structure function of phase screen generated by using this method is calculated and compared with the theoretical Kolmogorov structure function. The accuracy of the simulated phase screen can be improved with the increase of subharmonics. In addition, comparison between the improved subharmonic method and other four phase screen generation methods (standard fast Fourier transform method, subharmonic method, Zernike polynomials method and random mid-point displacement method) is also carried out. The comparative results show that the phase structure function for the improved subharmonic method matches very closely that of Kolmogorov turbulence theory, and it is the best one in comparison with those of other four phase screen generation methods.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P427.1

DOI:10.3788/gzxb20194802.0201002

基金项目:国家自然科学基金(No. 61302105), 中央高校基本科研业务费专项资金(No. 2017MS107), 河北省高等学校科学技术研究项目(No. QN2016093)

收稿日期:2018-10-09

修改稿日期:2018-12-21

网络出版日期:--

作者单位    点击查看

刘涛:华北电力大学 电子与通信工程系, 河北 保定 071003北京邮电大学 信息光子学与光通信研究院, 北京 100876
朱聪:华北电力大学 电子与通信工程系, 河北 保定 071003
孙春阳:华北电力大学 电子与通信工程系, 河北 保定 071003
张景芝:华北电力大学 电子与通信工程系, 河北 保定 071003
雷艳旭:华北电力大学 电子与通信工程系, 河北 保定 071003
张荣香:河北大学 物理科学与技术学院, 河北 保定 071002

联系人作者:刘涛(taoliu@ncepu.edu.cn)

备注:刘涛(1981-), 男, 副教授, 博士, 主要研究方向为光纤通信技术.

【1】BALAJI K A, PRABU K. Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors[J]. Optics Communications, 2018, 410: 643-651.

【2】RAJ A A B, SELVI J A V, DURAIRAJ S. Comparison of different models for ground-level atmospheric turbulence strength (Cn2) prediction with a new model according to local weather data for FSO applications[J]. Applied Optics, 2015, 54(4): 802-815.

【3】KE Xi-zheng, XUE Yao, Effect on the partially coherent beam propagation properties in the atmospheric turbulence considering its scales [J]. Acta Photonica Sinica, 2017, 46(1): 0101002.
柯熙政, 薛瑶. 大气湍流尺度对部分相干光传输特性的影响[J]. 光子学报, 2017, 46(1): 0101002.

【4】ZHANG Lei, LI Bo, ZHAO Xin, et al. Influence of atmosphere turbulence to tracking system in space laser communication [J]. Acta Photonica Sinica, 2017, 46(9): 0901001.
张雷, 李勃, 赵馨,等. 大气湍流对空间激光通信跟踪系统的影响[J]. 光子学报, 2017, 46(9): 0901001.

【5】CUI Xiao-zhou, YIN Xiao-li, CHANG Huan, et al. A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence[J]. Chinese Physics B, 2017, 26(11): 232-238.

【6】LIU Yang-yang, LV Qun-bo, ZHANG Wen-xi. Simulation for space target interference imaging system distorted by atmospheric turbulence[J]. Acta Physica Sinica, 2012, 61(12): 225-233.
刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究[J]. 物理学报, 2012, 61(12): 225-233.

【7】MCGLAERY B L. Computer simulation studies of compensation of turbulence degraded images[C]. SPIE, 1976, 74: 225-233.

【8】LANE R G, GLINDEMANN A, DAINTY J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224.

【9】JOHANSSON E M, GAVEL D T. Simulation of stellar speckle imaging[C]. SPIE, 1994, 2200: 372-383.

【10】XIANG Jin-song. Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen[J]. Optics Express, 2012, 20(1): 681-687.

【11】CAI Dong-mei, WANG Kun, JIA Peng, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 227-232.
蔡冬梅, 王昆, 贾鹏,等. 功率谱反演大气湍流随机相位屏采样方法的研究[J]. 物理学报, 2014, 63(10): 227-232.

【12】RODDIER N. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180.

【13】NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America B, 1976, 66(3): 207-211.

【14】FENG Fan, LI Chang-wei. Simulation of atmospheric turbulence phase screen based on wavelet analysis[J]. Acta Optica Sinica, 2017, 37(1): 0101004.
丰帆, 李常伟. 基于小波分析的大气湍流相位屏模拟[J]. 光学学报, 2017, 37(1): 0101004.

【15】WU Han-ling, YAN Hai-xing, LI Xin-yang, et al. Generation of rectangular turbulence phase screens based on fractal characteristics of distorted wavefront[J]. Acta Optica Sinica, 2009, 29(1): 114-119.
吴晗玲, 严海星, 李新阳,等. 基于畸变相位波前分形特征产生矩形湍流相屏[J]. 光学学报, 2009, 29(1): 114-119.

【16】DING Xiao-na, CAI Dong-mei, ZHAO Yuan, et al. Performance of atmospheric turbulence phase screen simulation using fractal method[J]. Chinese Journal of Lasers, 2013, 40(12): s113002.
丁晓娜, 蔡冬梅, 赵圆, 等. 分形法模拟大气湍流相位屏性能分析[J]. 中国激光, 2013, 40(12): s113002.

【17】SCHMIDT J D. Numerical simulation of optical wave propagation with examples in MATLAB[M]. Bellingham, Washington, USA, SPIE Press, 2010.

引用该论文

LIU Tao,ZHU Cong,SUN Chun-yang,ZHANG Jing-zhi,LEI Yan-xu,ZHANG Rong-xiang. Improved Subharmonic Method for Simulation of Atmospheric Turbulence Phase Screen[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0201002

刘涛,朱聪,孙春阳,张景芝,雷艳旭,张荣香. 一种改进的次谐波大气湍流相位屏模拟方法[J]. 光子学报, 2019, 48(2): 0201002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF