首页 > 论文 > 光子学报 > 48卷 > 2期(pp:211003--1)

超大视场红外双目视觉极线约束与空间定位

Ultra-wide Field Infrared Binocular Vision Epipolar Constraint and Spatial Positioning

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统可见光、红外小视场视觉定位系统易受光照条件影响、环境适应性差、视觉信息不足等缺陷, 提出了一种基于超大视场红外双目视觉的非线性极线约束与目标定位方法.利用全景相机畸变模型对超大视场红外相机成像过程的几何关系进行分析, 建立了一般结构的超大视场红外双目视觉系统成像模型, 完成了同名像点非线性极线约束方程的数理推导; 以此模型为基础, 研究了一种适用于超大视场红外双目视觉系统的目标三维空间定位解算方法.实验结果表明:不同环境照度场景中距离为1.75~8.05 m的8个目标点在极线方程约束下, 同名像点的匹配搜索由二维降为一维, 将匹配同名像点坐标带入三维空间定位解算方程, 距离误差在0.9%~7.0%之间, 较高的定位精度验证了所提方法的正确性, 以及超大视场红外双目视觉系统的空间定位能力与优势.

Abstract

Traditional visible light and infrared small field view positioning systems have some shortcomings, such as vulnerable to light conditions, poor environmental adaptability, and lack of visual information. In order to overcome these shortcomings, nonlinear epipolar constraint and target spatial positioning method based on ultra-wide field infrared binocular vision system was proposed. The generalized camera distortion model was used to describe the infrared ultra-wide camera imaging process, and the binocular system distortion model of non-parallel structure was establish. And then the theoretical derivation of the nonlinear epipolar constraint equation for homonymous image points was completed. A target location algorithm for ultra-wide field infrared binocular vision system was established from the point of view of space geometry. The experimental results show that the matching search of homonymous image points, included eight target points with the distance from 1.75~8.05 m in different scenes, is reduced from two-dimensional to one-dimensional under the conditions of epipolar constraint. The matching results were brought into the solution equation of three-dimensional spatial positioning and the distance error of positioning is between 0.9% and 7.0%. The higher positioning accuracy shows the correctness of the proposed method, and verifies the spatial positioning ability and advantage of the ultra-wide field infrared binocular vision system.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/gzxb20194802.0211003

基金项目:国家自然科学基金(No.61801507)

收稿日期:2018-08-11

修改稿日期:2018-11-29

网络出版日期:--

作者单位    点击查看

陈一超:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
刘秉琦:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
黄富瑜:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003

联系人作者:陈一超(opticscyc@163.com)

备注:陈一超(1991-), 男, 博士研究生, 主要研究方向为机器视觉.

【1】ZHANG Xue-he. Environment map building and motion planning of hexapod robot based on binocular vision [D]. Harbin: Harbin Institute of Technology, 2016.
张学贺. 基于双目视觉的六足机器人环境地图构建及运动规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

【2】NEFTI-MEZIANI S, MANZOOR U, DAVIS S, et al. 3D perception from binocular vision for a low cost humanoid robot NAO [J]. Robotics and Autonomous Systems, 2015, 68: 129-139.

【3】WANG Jun. Research on key technology of unmanned vehicle perception system [D]. Hefei: University of Science and Technology of China, 2016.
王俊. 无人驾驶车辆环境感知系统关键技术研究[D]. 合肥:中国科学技术大学, 2016.

【4】KWAK J Y, KO B C, NAM J Y. Pedestrian intention prediction based on dynamic fuzzy automata for vehicle driving at nighttime [J]. Infrared Physics & Technology, 2017, 81: 41-51.

【5】LAKSHMI A, FAHEEMA A G J, DEODHARE D. Pedestrian detection in thermal images: an automated scale based region extraction with curvelet space validation [J]. Infrared Physics & Technology, 2016, 76: 421-438.

【6】LEE E J, KO B C, NAM J Y. Recognizing pedestrian’s unsafe behaviors in far-infrared imagery at night [J]. Infrared Physics & Technology, 2016, 76: 261-270.

【7】KWAK J Y, KO B C, NAM J Y. Pedestrian intention prediction based on dynamic fuzzy automata for vehicle driving at nighttime[J]. Infrared Physics & Technology, 2017, 81: 41-51.

【8】KIM D, CHOI J, YOO H, et al. Rear obstacle detection system with fisheye stereo camera using HCT [J]. Expert Systems with Applications, 2015, 42(17-18): 6295-6305.

【9】IGUCHI Y, YAMAGUCHI J. Omni-directional 3D measurement using double fish-eye stereo vision [C]. IEEE 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), 2015: 1-6.

【10】LI Hai-bin, CHU Guang-yu, ZHANG Qiang, et al. Space point positioning based on optimization of fisheye lens imaging mode [J]. Acta Optica Sinica, 2015, 35(7): 0715003.
李海滨, 褚光宇, 张强, 等. 基于优化的鱼眼镜头成像模型的空间点定位[J]. 光学学报, 2015, 35(7): 0715003.

【11】MOREAU J, AMBELLOUIS S, RUICHEK Y. 3D reconstruction of urban environment on fisheye stereovision [C]. IEEE International Conference on Signal Image Technology and Internet Based Systems (SITIS), 2012, 42(4): 36-41.

【12】SONG Tao, XIONG Wen-li, HOU Pei-guo, et al. Stereo matching for fish-eye images based on epipolar geometry and support neighborhood [J]. Optics and Precision Engineering, 2016, 24(8): 2050-2058.
宋涛, 熊文莉, 侯培国, 等. 基于极曲线几何和支持邻域的鱼眼图像立体匹配[J]. 光学精密工程, 2016, 24(8): 2050-2058.

【13】SAMY A M, GAO Z S. Foveated fisheye lens design using an angle-variant distortion projection function [J]. Optical Review, 2015, 22(6): 919-927.

【14】URBAN S, LEITLOFF J, STEFAN H. Improved wide-angle, fisheye and omnidirectional camera calibration [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 72-79.

【15】DONG H J, WANG L. Non-iterative spot center location algorithm based on Gaussian for fish-eye imaging laser warning system [J]. Optik, 2012, 123: 2148-2153.

【16】SCARAMUZZA D, MARTINELLI A, SIEGWART R. A flexible technique for accurate omnidirectional camera calibration and structure from motion [C]. IEEE International Conference on Computer Vision systems, 2006: 45-53.

【17】CUI X Y, FAN H Y, CHEN H S, et al. Epipolar geometry for prism-based single-lens stereovision [J]. Machine Vision and Applications, 2017, 28(3-4): 313-326.

【18】CHENG Meng-jiao, SHEN Xia-jing, XIAO Jiang-jian, et al. Three-dimensional calibration of fisheye camera based on laser scanner [J]. Acta Optica Sinica, 2017, 37(3): 0315001.
程梦娇, 申夏晶, 肖江剑, 等. 基于激光扫描的鱼眼相机三维标定方法[J]. 光学学报, 2017, 37(3): 0315001.

【19】KOMATSU S, MARKMAN A, MAHALANOBIS A, et al. Three-dimensional integral imaging and object detection using long-wave infrared imaging.[J]. Applied Optics, 2017, 56(9): D120.

引用该论文

CHEN Yi-chao,LIU Bing-qi,HUANG Fu-yu. Ultra-wide Field Infrared Binocular Vision Epipolar Constraint and Spatial Positioning[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0211003

陈一超,刘秉琦,黄富瑜. 超大视场红外双目视觉极线约束与空间定位[J]. 光子学报, 2019, 48(2): 0211003

被引情况

【1】王涛,李战,乔伟林,王盛,吴军. 采用散斑测量的复杂曲面叶片修复自适应定位. 光子学报, 2019, 48(12): 1212001-1212001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF