首页 > 论文 > 红外 > 40卷 > 1期(pp:16-23)

基于最优可免域神经免疫网络的深度模糊红外目标提取算法

Deeply Blurred Infrared Target Extraction Based on Optimal Immune Field Neural Immune Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

深度模糊是模糊红外图像的一类表现特征, 准确提取红外图像的深度模糊区域是提取模糊红外目标的基础。基于生物免疫系统在抗原检测、提取和消除上表现出识别、学习、记忆、耐受和协调配合等优异特性, 结合生物免疫中神经系统与免疫系统相互作用的关系, 提出了一种基于最优可免域神经免疫网络的深度模糊红外目标提取算法。该算法通过设计神经网络能给进行模糊红外图像目标与背景分类的免疫网络以指导作用。依靠独立于免疫系统神经网络先验知识的作用, 设计了最优可免域神经免疫网络, 实现了针对深度模糊红外目标的准确提取。实验结果证明, 相对于其他传统目标提取算法, 该算法能更有效和更准确地提取模糊红外目标图像中的目标。

Abstract

Deep blurring is a kind of expression feature of blurred infrared images. The accurate extraction of the deeply blurred region in infrared images is the foundation of extracting blurry infrared targets. On the basis of the excellent characteristics of recognition, learning, memory, tolerance and coordination exhibited by biological immune systems in antigen detection, extraction and elimination, a deeply blurred infrared target extraction algorithm based on optimal immune field neural immune network is proposed by combining the relationship between the nervous system and the immune system in biological immunity. The algorithm can provide a guiding role for the immune network in target and background classification of blurred infrared images by designing a neural network. By relying on the function of prior knowledge of neural network independent of the immune system, an optimal immune field neural immune network is designed and accurate extraction of blurred infrared targets is implemented. The experimental results show that the algorithm can extract targets in blurred infrared target images more effectively and accurately than other traditional target extraction algorithms for blurred infrared target images.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3969/j.issn.1672-8785.2019.01.004

所属栏目:研究论文

基金项目:国家自然科学基金 (61502340);天津市自然科学基金 (18JCQNJC01000); 天津市教委科研计划项目(2018KJ133); 天津市复杂系统控制理论及应用重点实验室开放基金(TJKL-CTACS-201907)

收稿日期:2018-12-17

修改稿日期:--

网络出版日期:--

作者单位    点击查看

于晓:天津理工大学电气电子工程学院, 复杂系统控制理论与应用重点实验室, 天津 300384
周子杰:天津理工大学电气电子工程学院, 复杂系统控制理论与应用重点实验室, 天津 300384
高强:天津理工大学电气电子工程学院, 复杂系统控制理论与应用重点实验室, 天津 300384

联系人作者:于晓(yx_tjut@163.com)

备注:于晓(1985-), 男, 山东临沂人, 讲师, 主要研究方向为机器视觉与人工智能。E-mail: yx_tjut@163.com

【1】Rodet F,Tasiemski A, Boidin-wichlacz C, et al. Hm-MyD88 and Hm-SARM: Two Key Regulators of the Neuroimmune System and Neural Repair in the Medicinal Leech[J/OL]. Scientific Reports, 2015,5[2015-0416]. https://www.nature.com/articles/srep09624.

【2】Yu X. Fuzzy Infrared Image Segmentation Based on Multilayer Immune Clustering Neural Network[J]. Optik-International Journal for Light and Electron Optics, 2017, 140:959-963.

【3】Fu D, Yu X, Tong H. Target Extraction of Blurred Infrared Image with an Immune Network Template Algorithm[J]. Optics and Laser Technology, 2014, 56(1):102-106.

【4】许茗, 于晓升, 陈东岳, 等. 复杂热红外监控场景下行人检测[J]. 中国图象图形学报, 2018, 23(12): 1829-1837.

【5】荣楚君, 曹晓光, 白相志. Facet方向导数特征与稀疏表示相结合的红外弱小目标检测算法[J]. 中国图象图形学报, 2018, 23(11): 1768-1776.

【6】杨焘, 付冬梅. 流形正则化多核模型的模糊红外目标提取[J]. 北京科技大学学报, 2016, 38(6):876-885.

【7】Li S, Ma J . A Kernel Fuzzy Clustering Infrared Image Segmentation Algorithm Based on Histogram and Spatial Restraint[C]. International Congress on Image and Signal Processing. IEEE, 2017.

【8】刘敏,李智彪.基于粒子群优化脉冲耦合神经网络的红外图像分割[J]. 激光杂志, 2016, 37(2):50-53.

【9】Bai X, Wang Y, Liu H, et al. Symmetry Information Based Fuzzy Clustering for Infrared Pedestrian Segmentation[C].IEEE Transactions on Fuzzy Systems, 2018,26(4): 1946-1959.

【10】Lin W, Chu Y W. Biological Characteristics and Optical Imaging Research of Immunological Synapse Formation[J]. Progress in Biochemistry and Biophysics, 2017, 44(12):1066-1073.

【11】Obaid A, Naz A, Ikram A, et al. Model of the Adaptive Immune Response System Against HCV Infection Reveals Potential Immunomodulatory Agents for Combination Therapy[J/OL]. Scientific Reports, 2018, 8[2018-07-11].https://www.nature.com/articles/s41598-018-27163-0.

【12】Ribeiro-da-Silva M, Vasconcelos D M, Alencastre I S, et al. Interplay between Sympathetic Nervous System and Inflammation in Aseptic Loosening of Hip Joint Replacement[J/OL]. Scientific Reports, 2018, 10[2018-10-30].https://www.nature.com/articles/s41598-018-33360-8.

【13】Pavlov V A, Tracey K J . Neural Rregulation of Immunity: Molecular Mechanisms and Clinical Translation[J]. Nature Neuroscience, 2017, 20(2):156-166.

【14】Pavlov V A, Tracey K J. Neural Regulators of Innate Immune Responses and Inflammation[J]. Cellular and Molecular Life Sciences CMLS, 2004, 61(18):2322-2331.

【15】Sébastien, Foster S L, Woolf C J . Neuroimmunity: Physiology and Pathology[J]. Annual Review of Immunology, 2016, 34(1):421-447.

引用该论文

YU Xiao,ZHOU Zi-jie,GAO Qiang. Deeply Blurred Infrared Target Extraction Based on Optimal Immune Field Neural Immune Network[J]. INFRARED, 2019, 40(1): 16-23

于晓,周子杰,高强. 基于最优可免域神经免疫网络的深度模糊红外目标提取算法[J]. 红外, 2019, 40(1): 16-23

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF