首页 > 论文 > 激光与光电子学进展 > 56卷 > 7期(pp:71504--1)

高效的胃镜图像肿瘤跟踪算法

Efficient Tumor Tracking Algorithm for Gastroscope Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

根据胃镜下的肿瘤特征,利用基于加速稳健特征(SURF)的模板匹配跟踪算法对肿瘤进行跟踪,通过去除特征点的误匹配点,提高了跟踪定位精度。在基于SURF的匹配跟踪算法中,利用匹配特征点的聚类中心及包围特征点的最小圆位置,测量了每帧跟踪效果。对两组胃窥镜下病灶的视频帧进行跟踪实验,结果表明,改进的基于SURF的匹配跟踪算法具有较好的稳定性和跟踪精度。

Abstract

According to tumor features under gastroscope, the template matching tracking algorithm based on speeded up robust features (SURF) are adopted to track the tumor image. Mismatching points of features are removed to improve the tracking accuracy. In matching tracking algorithm based on SURF, the clustering center of matching feature points and smallest circular position around the feature point are used to measure tracking effect of each frame. Video frames of two groups of gastroscopic lesions are regarded as experiment dataset for target tracking tests. Results show that the improved matching tracking algorithm based on SURF has good stability and tracking accuracy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958.98

DOI:10.3788/lop56.071504

所属栏目:机器视觉

收稿日期:2018-09-14

修改稿日期:2018-10-18

网络出版日期:2018-10-30

作者单位    点击查看

刘全胜:河北公安警察职业学院警务科研处, 河北 石家庄 050091
江艳梅:河北交通职业技术学院经济管理系, 河北 石家庄 050091
杨景超:河北交通职业技术学院经济管理系, 河北 石家庄 050091
马鹏程:识途科技(广州)有限责任公司, 广东 广州 511458

联系人作者:杨景超(280573306@qq.com)

【1】National Health and Family Planning Commission. Chinese colorectal cancer treatment and treatment regulations (2017 Edition)[J]. Chinese Journal of Frontier Medicine (Electronic Edition), 2018, 10(3): 1-21.
国家卫生计生委. 中国结直肠癌诊疗规范(2017年版)[J]. 中国医学前沿杂志(电子版), 2018, 10(3): 1-21.

【2】Huang X, Zheng Y Y, Li F R. Immune cells target colon cancer cancer stem cells[J]. Chinese Journal of Immunology, 2017, 33(1): 156-160.
黄雪, 郑媛媛, 李富荣. 免疫细胞靶向治疗结肠癌肿瘤干细胞[J]. 中国免疫学杂志, 2017, 33(1): 156-160.

【3】Li Y M, Hao S W, Yang Z D, et al. Robot-assisted master-slave system for gastroscope intervention[J]. Robot, 2016, 38(1): 107-114.
李言民, 郝思文, 杨臻达, 等. 主从式胃镜介入机器人系统[J]. 机器人, 2016, 38(1): 107-114.

【4】Li Y M, Liu H, Li G X, et al. In-vivo perception and flexible operation focused on minimally invasive intervention of natural orifice[J]. Chinese Science Bulletin, 2013, 58(S2): 175-180.
李言民, 刘浩, 李贵祥, 等. 面向自然腔道微创介入的在体感知与柔性操作[J]. 科学通报, 2013, 58(S2): 175-180.

【5】Wang M. Research on pedestrian detection and tracking technology based on mobile vision platform[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2012.
王敏. 基于移动视觉平台的行人检测与跟踪技术研究[D]. 北京: 中国科学院研究生院, 2012.

【6】Lan K Y. Research on vehicle tracking technology based on feature detection[D]. Beijing: Beijing University of Posts and Telecommunications, 2010.
兰昆艳. 基于特征检测的车辆跟踪技术的研究[D]. 北京: 北京邮电大学, 2010.

【7】Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2113-2120.

【8】Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【9】Li Y, Zhou J, Cheng A, et al. SIFT keypoint removal and injection via convex relaxation[J]. IEEE Transactions on Information Forensics & Security, 2016, 11(8): 1722-1735.

【10】Ardizzone E, Bruno A, Mazzola G. Copy-move forgery detection by matching triangles of keypoints[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(10): 2084-2094.

【11】Li D, Zhou H L, Lam K M. High-resolution face verification using pore-scale facial features[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2317-2327.

【12】Bay H, Tuytelaars T, van Gool L. SURF: speeded up robust features[C]∥European Conference on Computer Vision, 2006: 404-417.

【13】Alahari K, Berg A, Hager G, et al. The thermal infrared visual object tracking VOT-TIR2015 challenge results[C]∥IEEE International Conference on Computer Vision Workshop, 2015: 639-651.

【14】Kristan M, Pflugfelder R, Leonardis A. et al. The visual object tracking VOT2014 challenge results[C]∥European Conference on Computer Vision Workshop, 2014: 191-217.

【15】Denpanis K G. Relationship between the sum of squared difference (SSD) and cross correlation for template matching[R]. York: York University, 2005: 1.

【16】Chu J H, Wu Z R, Lü W, et al. Breast cancer diagnosis system based on transfer learning and deep convolutional neural networks[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081001.
褚晶辉, 吴泽蕤, 吕卫, 等.基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统[J]. 激光与光电子学进展, 2018, 55(8): 081001.

引用该论文

Liu Quansheng,Jiang Yanmei,Yang Jingchao,Ma Pengcheng. Efficient Tumor Tracking Algorithm for Gastroscope Image[J]. Laser & Optoelectronics Progress, 2019, 56(7): 071504

刘全胜,江艳梅,杨景超,马鹏程. 高效的胃镜图像肿瘤跟踪算法[J]. 激光与光电子学进展, 2019, 56(7): 071504

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF