首页 > 论文 > 激光与光电子学进展 > 56卷 > 7期(pp:70005--1)

无标记显微成像技术的研究进展

Research Progress on Label-Free Microscopic Imaging Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

无标记显微成像技术包括光学相干层析、光声成像、非线性成像和微球透镜成像等技术。概述了目前常用的无标记显微成像技术,并对各种传统和先进的成像原理进行了总结。详细介绍了各种无标记成像技术的优缺点和最新研究进展,以及此类成像技术在各领域的应用,并对基于无标记显微技术的多模态成像技术的未来发展进行了展望。

Abstract

Label-free microscopic imaging technology includes the optical coherence tomography, photoacoustic imaging, nonlinear imaging, and microsphere lens imaging technology. The commonly used label-free imaging techniques are introduced, and the traditional and advanced imaging principles are summarized. The advantages and disadvantages of such various of label-free imaging technologies and the latest research progress are introduced in detail, including the applications of such imaging technology in various fields. Finally, the future development of multi-modal imaging technology based on unmarked microscopy technology is prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:Q632

DOI:10.3788/lop56.070005

所属栏目:综述

基金项目:国家自然科学基金(61722508,61525503,61620106016,81727804)、国家重点基础研究发展计划(2015CB352005)、广东省自然科学基金创新团队(2014A030312008)、深圳市基础研究项目(JCYJ20150930104948169,JCYJ20160328144746940,GJHZ20160226202139185,JCYJ20170412105003520)、深圳大学自然科学基金(2017027)

收稿日期:2018-08-06

修改稿日期:2018-08-27

网络出版日期:2018-11-20

作者单位    点击查看

张佳:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
洪亮:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
任升:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
周非凡:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
胡睿:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
屈军乐:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
刘丽炜:深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060

联系人作者:刘丽炜(liulw@szu.edu.cn)

【1】Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8206-8210.

【2】Betzig E, Patterson G H,Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

【3】Nakayama Y, Pauzauskie P J, Radenovic A, et al. Tunable nanowire nonlinear optical probe[J]. Nature, 2007, 447(7148): 1098-1101.

【4】Yao J J, Wang L D, Li C Y, et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 2014, 112(1): 014302.

【5】Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

【6】Raghunathan R, Singh M, Dickinson M, et al. Optical coherence tomography for embryonic imaging: a review[J]. Journal of Biomedical Optics, 2016, 21(5): 050902.

【7】Aydin A, Wollstein G, Price L L, et al. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery[J]. Ophthalmology, 2003, 110(8): 1506-1511.

【8】Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

【9】Zhang Q Q, Huang Y P, Zhang T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking[J]. Journal of Biomedical Optics, 2015, 20(6): 066008.

【10】Tearney G J, Bouma B E. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis[J]. Optics Letters, 2002, 27(7): 533-535.

【11】Motaghian N S M, Joo C, Tearney G J, et al. Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy[J]. Optics Express, 2008, 16(22): 17186-17195.

【12】D′amico A V, Weinstein M, Li X D, et al. Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland[J]. Urology, 2000, 55(5): 783-787.

【13】Welzel J. Optical coherence tomography in dermatology: a review[J]. Skin Research and Technology, 2001, 7(1): 1-9.

【14】Baumgartner A,Dichtl S, Hitzenberger C K, et al. Polarization–sensitive optical coherence tomography of dental structures[J]. Caries Research, 2000, 34(1): 59-69.

【15】Leitgeb R A, Werkmeister R M, Blatter C, et al. Doppler optical coherence tomography[J]. Progress in Retinal and Eye Research, 2014, 41: 26-43.

【16】Liu G J, Chen Z P. Advances in Doppler OCT[J]. Chinese Optics Letters, 2013, 11(1): 011702.

【17】Diebold G J, Sun T, Khan M I. Photoacoustic monopole radiation in one, two, and three dimensions[J].Physical Review Letters, 1991, 67(24): 3384-3387.

【18】Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.

【19】Maslov K, Zhang H F, Hu S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.

【20】Song L,Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 2011, 36(7): 1236-1238.

【21】Aguirre J, Schwarz M, Soliman D, et al. Broadband mesoscopic optoacoustic tomography reveals skin layers[J]. Optics Letters, 2014, 39(21): 6297-6300.

【22】Wang X D, Pang Y J, Ku G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 2003, 21(7): 803-806.

【23】Lin H C A,Chekkoury A, Omar M, et al. Selective plane illumination optical and optoacoustic microscopy for postembryonic imaging[J]. Laser & Photonics Reviews, 2015, 9(5): L29-L34.

【24】Park K, Kim J Y, Lee C, et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 2017, 7: 13359.

【25】Tian C, Zhang W, Mordovanakis A, et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Express, 2017, 25(14): 15947-15955.

【26】Chu S W, Chen S Y, Tsai T H, et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy[J]. Optics Express, 2003, 11(23): 3093-3099.

【27】Fine S, Hansen W P. Optical second harmonic generation in biological systems[J].Applied Optics, 1971, 10(10): 2350-2353.

【28】Bancelin S, Aimé C, Gusachenko I, et al. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals[J]. Nature Communications, 2014, 5: 4920.

【29】Small D M, Jones J S, Tendler I I, et al. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy[J]. Biomedical Optics Express, 2018, 9(1): 214-229.

【30】Gauderon R, Lukins P B, Sheppard C J R. Simultaneous multichannel nonlinear imaging: combined two-photon excited fluorescence and second-harmonic generation microscopy[J]. Micron, 2001, 32(7): 685-689.

【31】Mahou P, Olivier N, Labroille G, et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos[J]. Biomedical Optics Express, 2011, 2(10): 2837-2849.

【32】Segawa H, Okuno M, Kano H, et al. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation)[J]. Optics Express, 2012, 20(9): 9551-9557.

【33】Nan X L, Potma E O, Xie X S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy[J]. Biophysical Journal, 2006, 91(2): 728-735.

【34】Eckhardt G, Hellwarth R W, McClung F J, et al. Stimulated Raman scattering from organic liquids[J]. Physical Review Letters, 1962, 9(11): 455-458.

【35】Lee J Y, Hong B H, Kim W Y,et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses[J]. Nature, 2009, 460(7254): 498-501.

【36】Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218-224.

【37】Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104.

【38】Huszka G, Yang H, Gijs M A M. Microsphere-based super-resolution scanning optical microscope[J]. Optics Express, 2017, 25(13): 15079-15092.

【39】Hong G S, Lee J C, Robinson J T,et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence[J]. Nature Medicine, 2012, 18(12): 1841-1846.

【40】Yang V X D, Gordon M L, Seng-Yue E, et al. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of xenopus laevis[J]. Optics Express, 2003, 11(14): 1650-1658.

【41】Sudheendran N, Syed S H, Dickinson M E, et al. Speckle variance OCT imaging of the vasculature in live mammalian embryos[J]. Laser Physics Letters, 2011, 8(3): 247-252.

【42】Peterson L M, Jenkins M W, Gu S, et al. 4D shear stress maps of the developing heart using Doppler optical coherence tomography[J]. Biomedical Optics Express, 2012, 3(11): 3022-3032.

【43】Wang S, Lopez A L, Larina I V. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis[J]. Proceedings of SPIE, 2018, 10493: 104930C.

【44】Kruger R A, Lam R B, Reinecke D R, et al. Photoacoustic angiography of the breast[J]. Medical Physics, 2010, 37(11): 6096-6100.

【45】Ku G, Fornage B D, Jin X, et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging[J]. Technology in Cancer Research & Treatment, 2005, 4(5): 559-566.

【46】Matsumoto Y, Asao Y, Yoshikawa A, et al. Label-free photoacoustic imaging of human palmar vessels: a structural morphological analysis[J]. Scientific Reports, 2018, 8: 786.

【47】Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nature Reviews Cancer, 2005, 5(3): 161-171.

【48】Yao J J, Wang L H V. Photoacoustic brain imaging: from microscopic to macroscopic scales[J]. Neurophotonics, 2014, 1(1): 011003.

【49】Lui H, Zhao J, McLean D, et al. Real-time Raman spectroscopy for in vivo skin cancer diagnosis[J]. Cancer Research, 2012, 72(10): 2491-2500.

【50】He J P, Wang N, Tsurui H, et al. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: differentiate malignant melanoma from benign tumor tissue[J]. Scientific Reports, 2016, 6: 30209.

【51】Stummer W. 5-aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging[J]. Neurosurgery, 2015, 76(2): 230-231.

【52】Kut C, Chaichana K L, Xi J F, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Science Translational Medicine, 2015, 7(292): 292ra100.

【53】Ji M B, Orringer D A, Freudiger C W, et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy[J]. Science Translational Medicine, 2013, 5(201): 201ra119.

【54】Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science Translational Medicine, 2015, 7(274): 274ra19.

【55】Kuzmin N V, Wesseling P, de Witt Hamer P C, et al. Third harmonic generation imaging for fast, label-free pathology of human brain tumors[J]. Biomedical Optics Express, 2016, 7(5): 1889-1904.

【56】Losick R, Desplan C. Stochasticity and cell fate[J]. Science, 2008, 320(5872): 65-68.

【57】Muzzey D, van Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells[J]. Annual Review of Cell and Developmental Biology, 2009, 25(1): 301-327.

【58】Wang L D,Maslov K, Wang L H V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5759-5764.

【59】He G, Xu D, Qin H, et al. In vivo cell characteristic extraction and identification by photoacoustic flow cytography[J]. Biomedical Optics Express, 2015, 6(10): 3748-3756.

【60】Zhao Y, Yang S H, Chen C G, et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 2014, 39(9): 2565-2568.

【61】Marrison J, Raty L, Marriott P, et al. Ptychography-a label free, high-contrast imaging technique for live cells using quantitative phase information[J]. Scientific Reports, 2013, 3: 2369.

【62】Lim H, Sharoukhov D, Kassim I, et al. Label-free imaging of Schwann cell myelination by third harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 18025-18030.

【63】Jüngst C, Klein M, Zumbusch A. Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes[J]. Journal of Lipid Research, 2013, 54(12): 3419-3429.

【64】Kim G, Lee S, Shin S, et al. Three-dimensional label-free imaging and analysis of pinus pollen grains using optical diffraction tomography[J]. Scientific Reports, 2018, 8: 1782.

【65】Liu X W,Kuang C F, Hao X, et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Physical Review Letters, 2017, 118(7): 076101.

【66】Chen Z J, Yang S H, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 2016, 41(7): 1636-1639.

【67】Meng X Q, Yang Y T, Zhou L H, et al. Dual-responsive molecular probe for tumor targeted imaging and photodynamic therapy[J]. Theranostics, 2017, 7(7): 1781-1794.

引用该论文

Zhang Jia,Hong Liang,Ren Sheng,Zhou Feifan,Hu Rui,Qu Junle,Liu Liwei. Research Progress on Label-Free Microscopic Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070005

张佳,洪亮,任升,周非凡,胡睿,屈军乐,刘丽炜. 无标记显微成像技术的研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF