首页 > 论文 > 红外与激光工程 > 48卷 > 1期(pp:103001--1)

高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)

High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒光学频率梳在精密计量学和光谱学中扮演着革命性的推动角色, 成为近二十年超短脉冲激光技术及应用研究领域最活跃的前沿方向之一。文中基于250 MHz重复频率(frep)的掺镱(Yb)光纤激光器, 研究了不同腔内色散以及锁模机制对飞秒脉冲序列载波包络相位偏移频率(fCEO)噪声的影响。通过对飞秒光梳细节的优化, 得到了49 dB信噪比的fCEO拍频信号并获得了秒稳3.2×10-10的锁定结果, 同时frep的锁定结果也达到了到了秒稳3.4×10-13的精度。此外文中还研究了不同啁啾状态的种子光飞秒脉冲对基于大模场面积双包层Yb光子晶体光纤放大器输出光脉冲宽度的影响。以携带-3.8×104 fs2预啁啾量的光脉冲作为种子光, 在60 W 976 nm半导体激光泵浦下, 获得了250 MHz重复频率、23 W平均功率和66 fs压缩后脉冲宽度的激光输出。

Abstract

Femtosecond optical frequency combs have introduced revolutionary promotions to precision optical spectroscopy and metrology, and have been hot topics of laser technologies and applications for two decades. In this article, the affects of intracavity dispersion and mode-locking mechanism on carrier-envelope phase slip frequency(fCEO) of femtosecond laser pulse trains were researched based on a femtosecond Ytterbium-doped fiber laser with 250 MHz repetition rate. By optimizing the intracavity dispersion, pumping power, and detection methods, 49 dB signal-noise-ratio fCEO beat signal was obtained which then was stabilized it to a stability of 3.2×10-10 in 1 second, and a stability of 3.4×10-13(1 s) of frep was also achieved. In addition, the effects of pulse chirping on the output pulse duration of a fiber amplifier was researched based on a piece of large-mode-area photonic crystal Yb doped fiber. Under 60 W of pumping power from a laser diode at 976 nm wavelength, 23 W average output power from the amplifier with 66 fs pulse duration and 250 MHz repetition rate was achieved when the seed pulses were carring -3.8×104 fs2 pre-chirping dispersion.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/irla201948.0103001

所属栏目:特约专栏-"超快光纤激光技术(二)"

基金项目:国家自然科学基金(11274133)

收稿日期:2018-08-15

修改稿日期:2018-09-16

网络出版日期:--

作者单位    点击查看

孙敬华:东莞理工学院 电子工程与智能化学院, 广东 东莞 523808华中科技大学 物理学院, 湖北 武汉 430074Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
孙克雄:华中科技大学 物理学院, 湖北 武汉 430074
林志芳:华中科技大学 物理学院, 湖北 武汉 430074
孙继芬:华中科技大学 物理学院, 湖北 武汉 430074
晋 路:华中科技大学 物理学院, 湖北 武汉 430074
徐永钊:东莞理工学院 电子工程与智能化学院, 广东 东莞 523808

联系人作者:孙敬华(sunjh@dgut.edu.cn)

备注:孙敬华(1974-), 男, 教授, 主要从事飞秒激光、超快非线性频率变换和飞秒光学频率梳方面的研究。

【1】Ell R, Morgner U, Kartner F X, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Opt Lett, 2011, 26: 373.

【2】Eckstein J N, Ferguson A I, Hansch T W. High-resolution two-photon spectroscopy with picosecond light pulses[J]. Phys Rev Lett, 1978, 40: 847.

【3】Ranka J K, Winder R S, Stentz A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25: 25-27.

【4】Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288: 635.

【5】Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D. H, Keller U. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Appl Phys B, 1999, 69: 327.

【6】Diddams S A. The evolving optical frequency comb[J]. JOSA B, 2010, 27: B51-B62.

【7】Ye J, Cundiff S T. Femtosecond optical Frequency Comb Technology: Principle, Operation and Application[M]Berlin: Springer, 2005.

【8】Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys Rev Let, 2000, 5102: 84.

【9】Udem Th, Holzwarth R, Hansch T W. Optical frequency metrology[J]. Nature, 2002, 233: 416.

【10】Holzwarth R, Udem Th, Hansch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Phys Rev Let, 2000, 85: 2264-2275.

【11】Ma L S, Bi Z, Bartels A, L, et al. Optical frequency synthesis and comparison with uncertainty at the 10-19 level[J]. Science, 2004, 303: 1843-1848.

【12】Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature, 2005, 435: 321-324.

【13】Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th Decimal Place[J]. Science, 2008, 319: 1808-1812.

【14】Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506: 71.

【15】Blatt S, Ludlow A D, Campbell G K, et al. New limits on coupling of fundamental constants to gravity using 87 Sr optical lattice clock[J]. Phys Rev Lett, 2008, 100: 140801.

【16】Kolkowitz S, Pikovski I, Langellier N, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Phys Rev D, 2016, 94: 124043.

【17】Julien Mandon, Guy Guelachvili, Nathalie Picqué. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photon, 2009, 3: 99.

【18】Joohyung Lee, Young Jin Kim, Keunwoo Lee, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photon, 2010, 4: 716.

【19】Yoshiaki Nakajima, Kaoru Minoshima. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Opt Express, 2015, 23: 25979.

【20】van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Phys Rev Lett, 2012, 108: 183901.

【21】Zhao Xin, Hu Guoqing, Zhao Bofeng, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Opt Express, 2016, 24: 21833.

【22】Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photon, 2009, 3: 351-356.

【23】Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 2018, 359: 887.

【24】Kato T, Uchida M, Minoshima K. Non-scanning three-dimensional imaging using spectral interferometry with chirped frequency comb[C]//Conference on Lasers and Electro-Optics, 2016: SW1H.4.

【25】Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Opt Express, 2011, 19: 18501.

【26】Danzmann K, the LISA study team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Class Quantum Grav, 1996, 13: A247-A250.

【27】Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305: 503-505.

【28】Kurita T, Yoshida H, Kawashima T, et al. Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915nm laser diodes[J]. Opt Lett, 2012, 37: 3972-3974.

【29】Luo D, Liu Y, Gu C, et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Appl Phys Lett, 2018, 112: 061106.

【30】Zhou Shian, Lyuba Kuznetsova, Chong Andy, et al. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers[J]. Opt Express, 2005, 13: 4869-4877.

【31】Lyuba Kuznetsova, Frank W Wise. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Opt Lett, 2007, 32: 2671-2673.

【32】Hung-Wen Chen, JinKang Lim, Shu-Wei Huang et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression[J]. Opt Express, 2012, 20: 28672-28682.

【33】Schibli T R, Hartl I, Yost D C, et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power[J]. Nature Photon, 2008, 2: 355-359.

引用该论文

Sun Jinghua,Sun Kexiong,Lin Zhifang,Sun Jifen,Jin Lu,Xu Yongzhao. High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0103001

孙敬华,孙克雄,林志芳,孙继芬,晋 路,徐永钊. 高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)[J]. 红外与激光工程, 2019, 48(1): 0103001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF