首页 > 论文 > 光子学报 > 48卷 > 3期(pp:326001--1)

径向偏振螺旋贝塞尔光束的传输特性及其自重建

Propagation Characteristics and Self-reconstruction of Radially Polarized Spiral Bessel Beam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于广义惠更斯-菲涅尔衍射理论, 导出径向偏振螺旋贝塞尔光束的光场表达式, 研究了该光束的传输特性和传输过程中光束偏振态的变化, 及其通过扇形障碍物后的自重建特性.理论分析和数值计算发现:径向偏振螺旋贝塞尔光束在自由空间传输时, 在一定传输区域内, 光束以空心光束的形态绕光轴做离轴螺旋传输, 光束的发散角为零并一直保持着径向偏振的特性; 在光束的自重建过程中, 始终保持离轴螺旋传输特性, 随着传输距离的增加, 原本在遮挡区域消失的能量, 被逐渐衍射至障碍物遮挡区域的相反位置.

Abstract

Based on the generalized Huygens-Fresnel diffraction theory, the intensity expression of the radially polarized spiral Bessel beam is derived. The transmission characteristics, the change of the polarization state and self-reconstruction characteristics of the beam during transmission are studied. It is found that ,by the theoretical analysis and numerical calculation, when the radially polarized spiral Bessel beam is transmitted in free space, the beam is spirally transmitted around the optical axis in the form of a hollow beam and the divergence angle of the beam is zero in a certain transmission region. In addition, the characteristics of radial polarization are maintained during the transmission process. The off-axis spiral transmission characteristic is always maintained and the energy conservation law is followed in the self-reconstruction process of the beam. As the transmission distance increases, the energy originally disappeared in the occlusion region is gradually diffracted to the opposite position of the obstacle occlusion area.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/gzxb20194803.0326001

基金项目:国家自然科学基金(No.11774103),国家自然科学青年基金(No.61605049),福建省科技重大项目(No.2016H6016)

收稿日期:2018-09-27

修改稿日期:2018-11-20

网络出版日期:--

作者单位    点击查看

胡汉青:华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
吴逢铁:华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
胡润:华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
杨艳飞:华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021

联系人作者:胡汉青(623807994@qq.com)

备注:胡汉青(1993-), 男, 硕士研究生, 主要研究方向为光束传输与变换.

【1】DURNIN J, JR M J, EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.

【2】HU Run, WU Feng-tie, ZHU Qing-zhi, et al. Influence of off-axis astigmatism on high order Bessel beam[J]. Acta Optica Sinica, 2017, 37(8): 0826002.
胡润, 吴逢铁, 朱清智,等. 离轴像散对高阶贝塞尔光束的影响[J]. 光学学报, 2017, 37(8): 0826002.

【3】XIE Xiao-xia, WANG Shuo-chen, WU Feng-tie. Diffraction optical field of the Bessel beam through elliptical annular aperture[J]. Acta Physica Sinica, 2015, 64(12): 166-170.
谢晓霞, 王硕琛, 吴逢铁. Bessel光束经椭圆环形孔径后的衍射光场[J]. 物理学报, 2015, 64(12): 166-170.

【4】HE Xi, WU Feng-tie, LI Pan, et al. Self-reconstruction of high-order Bessel beams generated by green LED light source[J]. Scientia Sinica, 2015, 45(1): 014202.
何西, 吴逢铁, 李攀, 等. 绿光LED产生高阶Bessel光的自再现[J]. 中国科学2015, 45(1): 014202.

【5】AIDAS M, PISKARSKAS A, TRAPANI P D,et al. Spiraling zero-order Bessel beam[J]. Optics Letters, 2009, 34(14): 2129-31.

【6】AIDAS M, JARUTIS V, PISKARSKAS A. Generation and control of the spiraling zero-order Bessel beam[J]. Optics Express, 2010, 18(9): 8767-71.

【7】SUN Q, ZHOU K, FANG G, et al. Generation of spiraling high-order Bessel beams[J]. Applied Physics B, 2011, 104(1): 215-221.

【8】SUN Q, ZHOU K, FANG G, et al. Generalization and propagation of spiraling Bessel beams with a helical axicon[J]. Chinese Physics B, 2012, 21(1): 234-243.

【9】MUSHIAKE Y, MATSUMURA K, NAKAJIMA N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 1972, 60(9): 1107-1109.

【10】CAI Xun-ming, ZHAO Jin-yun, FAN Meng-hui, et al. Effect of the elliptic annular aperture on the focusing of radially polarized beam[J]. Acta Optica Sinica, 2016, 36(3): 0326002.
蔡勋明, 赵晶云, 范梦慧,等. 椭圆环光阑对径向偏振光聚焦研究的影响[J]. 光学学报, 2016, 36(3): 0326002.

【11】SUN Shun-hong, LIN Hui-chuan, CUI Sheng-wei, et al. Generation and propagation characteristics of the radially polarized non-diffracting beam[J]. Scientia Sinica, 2012, 42(10): 1022-1028.
孙顺红, 林惠川, 崔省伟,等. 径向偏振无衍射光束的产生及其传输特性研究[J]. 中国科学,2012, 42(10): 1022-1028.

【12】ZHAN Xiang-kong, LI Zheng-yong, ZHANG Yi ,et al. Radially polarized beam restructuring based on Stokes-vector measurement and interferometry[J]. Infrared and Laser Engineering, 2017, 46(4): 427002.
詹翔空, 李政勇, 张伊,等. 基于Stocks矢量测量与干涉法的径向偏振光束重建[J]. 红外与激光工程, 2017, 46(4): 427002.

【13】NIZIEV V G, NESTEROV A V.Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D, 1999, 32(32): 1455.

【14】KIMURA W, KIM G, ROMEA R, et al. Laser acceleration of relativistic electrons using the inverse cherenkov effect[J]. Physical Review Letters, 1995, 74(4): 546-549.

【15】NOVOTNY L, BEVERSLUIS M R, YOUNGWORTH K S, et al. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 2001, 86(23): 5251-5254.

【16】DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

【17】WU G, WANG F, CAI Y. Generation and self-healing of a radially polarized Bessel-Gauss beam[J]. Physical Review A, 2014, 89(4): 043807.

【18】MILIONE G, DUDLEY A, NGUYEN T A, et al. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams[J]. Journal of Optics, 2015, 17(3): 405-410.

【19】LI P, ZHANG Y, LIU S, et al. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation[J]. Optics Express, 2017, 25(5): 5821.

【20】L Bai-da. Laser optics[M]. third Edition. Beijing: Higher Education Press, 2003: 9-13.
吕百达. 激光光学[M]. 3版. 北京: 高等教育出版社, 2003: 9-13.

引用该论文

HU Han-qing,WU Feng-tie,HU Run,YANG Yan-fei. Propagation Characteristics and Self-reconstruction of Radially Polarized Spiral Bessel Beam[J]. ACTA PHOTONICA SINICA, 2019, 48(3): 0326001

胡汉青,吴逢铁,胡润,杨艳飞. 径向偏振螺旋贝塞尔光束的传输特性及其自重建[J]. 光子学报, 2019, 48(3): 0326001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF