光学 精密工程, 2019, 27 (2): 352, 网络出版: 2019-04-02   

自由飞行机器人气浮式模拟器设计

Design of air-bearing simulator for free-flying robot
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了搭建在轨组装的地面模拟实验系统, 设计了一种基于冷气推进、能够自由漂浮的三自由度自由飞行机器人模拟器, 并对模拟器的结构设计、气路系统、动力学建模和控制系统进行了研究。采用模块化设计对主体结构进行不同功能的分区, 并结合工作原理对模拟器的承载能力进行了分析和实验验证。然后, 采用部分解耦的方式对喷嘴进行了布置, 进一步设计了整个气路系统, 并对影响喷嘴推力的因素进行了理论分析和实验验证。最后, 采用牛顿-欧拉法建立了模拟器的动力学方程, 联合Simulink和Adams, 搭建了控制仿真模型并进行了运动仿真。实验结果显示, 模拟器能够承载800 kg以上的重量, 单方向上能够达到8 N的力, 整体运行时间能够达到30 min。模拟器对参考输入有很好的跟踪效果, 能够为超冗余模块化机械臂的地面实验提供可移动载体。
Abstract
To build a ground simulation experiment system for an in-orbit assembly, based on cold gas propulsion, we design a three-degrees-of-freedom free-flying robot simulator, and analyze the structural design, gas path system, dynamic modeling, and control system of the simulator. First, we adopt a modular design to partition the main structure of the simulator for different functions. Second, according to the working principle, we analyze and verify the bearing capacity of the simulator through an experiment. Subsequently, we arrange the nozzle in a partially decoupled way with the entire air path system, which is further designed. Then, we analyze the factors that influence the thrust size of the nozzle theoretically and verify them experimentally. Finally, we use the Newton-Euler method to establish the dynamic equation of the simulator. Simultaneously, combined with Simulink and Adams, we build a control simulation model and perform a motion simulation. The experimental results show that the simulator can carry a weight of more than 800 kg, with a force of 8 N on a single side and an overall running time of 30 min. Through simulation, we observe that the simulator has a good tracking effect on the reference input. The designed simulator can provide a mobile carrier for ground experiments of a super-redundant modular manipulator.

徐策, 李大伟, 贺帅, 夏明一, 徐振邦, 赵智远. 自由飞行机器人气浮式模拟器设计[J]. 光学 精密工程, 2019, 27(2): 352. XU Ce, LI Da-wei, HE Shuai, XIA Ming-yi, XU Zhen-bang, ZHAO Zhi-yuan. Design of air-bearing simulator for free-flying robot[J]. Optics and Precision Engineering, 2019, 27(2): 352.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!