首页 > 论文 > 光学 精密工程 > 27卷 > 2期(pp:479-487)

基于误差传播理论的PnP问题姿态精度分析

Attitude accuracy analysis of PnP based on error propagation theory

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种在辨识一组典型特征点误差关系的基础上, 建立间接测量值与直接测量值之间的最有利函数关系, 并根据误差传播理论综合其他特征点的误差影响, 最终获得完整的方位、俯仰和倾斜角误差数学模型的PnP问题误差分步分析新方法。以P4P问题研究为例, 推导得到了单目视觉测量中相关参数和变量的误差函数解析式, 揭示了影响姿态测量精度的误差规律。经P4P姿态解算仿真, 验证了误差数学模型的正确性, 以及基于误差传播理论的误差分步方法的有效性。分析误差数学模型可以看出: 在单目视觉测量参数确定的条件下, 方位角测量误差与方位角值无关, 与相机高度和合作标志尺寸的比值成正比, 在较大范围内俯仰和倾斜角变化对方位角测量误差影响小; 俯仰/倾斜角的测量误差与俯仰/倾斜角值有关, 与相机高度和合作标志尺寸比值的平方成正比; 方位角测量误差小于俯仰/倾斜角测量误差。给出的分析方法和误差解析数学模型对单目视觉测量系统设计有指导作用。

Abstract

Based on the error relation of a group of typical characteristic points, the most favorable function relation between indirect measurement and direct measurement was established, and the error influence of other characteristic points was synthesized according to the error propagation theory. Finally, a new method of error step-by-step analysis of the PNP problem with complete azimuth, pitch, and tilt angle error analysis model was proposed. Taking the P4P problem as an example, the analytical formulas of the error functions of the related parameters and variables in monocular vision measurement were derived, and the error rules affecting the attitude measurement were revealed. The correctness of the error mathematical model and the validity of the step-by-step error analysis method based on error propagation theory were verified by the simulation of P4P attitude calculation. Under the determined measurement parameters of monocular vision condition, the error analysis model shows that the azimuth angle measurement error is independent of the azimuth angle value, and the error is proportional to the ratio of camera height to cooperative mark size. The pitch/tilt angle has little effect on the measurement error in a larger range. The pitch/tilt angle measurement error is related to pitch/tilt angle value, and the error is proportional to the square of the ratio of camera height to cooperative mark size. The measurement error of the azimuth angle is less than that of the pitch/tilt angle. The analysis method and error function analytical formulas can provide guidance for the design of a monocular vision measurement system.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP394.1

DOI:10.3788/ope.20192702.0479

所属栏目:信息科学

基金项目:“十二五”装备预先研究项目资助项目

收稿日期:2018-09-03

修改稿日期:2018-11-12

网络出版日期:--

作者单位    点击查看

屈也频:海军研究院, 上海 200436
侯 旺:海军研究院, 上海 200436

联系人作者:屈也频(qypin@126.com)

备注:屈也频(1962-), 男, 湖南岳阳人, 研究员, 1982年、2006年、2009年于国防科技大学分别获得学士、硕士、博士学位, 主要从事航空电子系统研究。

【1】洪荣. 无人机对地面目标位姿的单目视觉测量方法研究[D].长沙: 国防科技大学, 2012.
HONG R. Research on Monocular Vision Method for Ground Targets Pose Measurement with the UAV [D].Changsha: National University of Defense Technology, 2012.(in Chinese)

【2】赵连军, 刘恩海, 张文明, 等. 单目三点位置测量精度分析[J].光学 精密工程, 2014, 22(5): 1190-1197.
ZHAO L J, LIU E H, ZHANG W M, et al.. Analysis of position estimation precision by cooperative target with three feature points [J]. Opt. Precision Eng., 2014, 22(5): 1190-1197.(in Chinese)

【3】安海峰, 黄群. 单相机位姿测量精度仿真分析[J].工程设备与材料, 2017: 104-105.
AN H F, HUANG Q. Simulation analysis of measuring accuracy of single phase position and position [J]. Engineering Equipment and Materials, 2017: 104-105.(in Chinese)

【4】王鹏, 周权通, 孙长库.多特征点拓扑确定位姿测量算法研究[J].红外与激光工程, 2017, 46(5): 517001_1-9.
WANG P, ZHOU Q T, SUN CH K. Study of pose estimation based on multiple feature points topological determination [J]. Infrared and Laser Engineering, 2017, 46(5): 517001_1-9.(in Chinese)

【5】VALEIRAS D R, KIME S, IENG S, et al.. An event-based solution to the perspective-n-point problem [J]. Frontiers In Neuroscience, 2016, 10: 1-14.

【6】ZHENG Y, KNEIP L.A direct least-squares solution to the PnP problem with unknown focal length [J]. IEEE, 2016: 1790-1798.

【7】汪启跃, 王中宇. 基于单目视觉的航天器位姿测量[J].应用光学, 2017, 38(2): 250-255.
WANG Q Y, WANG Z Y. Position and pose measurement of spacecraft based on monocular vision [J]. Journal of Applied Optics, 2017, 38(2): 250-255.(in Chinese)

【8】ZHOU J, WANG D.A solving the perspective-three-point problem using comprehensive grobner systems [J]. Journal of Systems Science & Complexity, 2016, 29(5): 1446-1471.

【9】曹琦, 王德江, 张齐, 等. 红外点目标检测中的能量累积[J].光学 精密工程, 2010, 18(3): 741-747.
CAO Q, WANG D J, ZHANG Q, et al.. Energy accumulation in infrared point target detection [J]. Opt. Precision Eng., 2010, 18(3): 741-747.(in Chinese)

【10】王天宇, 董文博, 王震宇. 基于单目视觉和固定靶标的位姿测量系统[J].红外与激光工程, 2017, 46(4): 427001-427003.
WANG T Y, DONG W B, WANG ZH Y. Position and orientation measurement system based on monocular vision and fixed target [J]. Infrared and Laser Engineering , 2017, 46(4): 427001-427003.(in Chinese)

【11】沈同圣, 张健, 娄树理. 面向目标检测的空间观测图像精确配准[J].光学 精密工程, 2014, 22(8): 2205-2213.
SHENG T SH, ZHANG J, LOU SH L. Precise registration of space observation images for target detection [J]. Opt. Precision Eng., 2014, 22(8): 2205-2213.(in Chinese)

【12】苏建东, 齐晓, 段修生. 基于单目视觉和棋盘靶标的平面姿态测量方法[J].光学学报, 2017, 37(8): 815001-815002.
SU J D, QI X, DUAN X SH. Plane pose measurement method based on monocular vision and checkboard target [J]. Acta Optica Sinica , 2017, 37(8): 815001-815002.(in Chinese)

【13】尚洋, 孙晓亮, 张跃强, 等. 三维目标位姿跟踪与模型修正[J].测绘学报, 2018, 47(6): 799-808.
SHANG Y, SUN X L, ZHANG Y Q, et al.. Research on 3D target pose tracking and modeling [J]. Acta Geodaetica et Cartographics Sinica , 2018, 47(6): 799-808.(in Chinese)

【14】徐文立. 计算机视觉的PNP问题的最优解[J].自动化学报, 1992, 18(5): 522-531.
XU W L. Optimal solutions of the PNP problem in computer vision [J]. Acta Automatica Sinica , 1992, 18(5): 522-531.(in Chinese)

【15】HAMEL T, SAMSON C.Riccati observers for the nonstationary PnP problem [J]. IEEE, 2018, 63(3): 726-741.

【16】WANG P, XU G, CHENG Y, et al..A simple, robust and fast method for the perspective-n-point Problem [J]. Pattern Recognition Letters, 2018, 108: 31-37.

【17】RUCHANURUCKS M, RAKPRAYOON P, KONGKAEW S. Automatic landing assist system using IMU plus PnP for robust positioning of fixed-wing UAVs [J]. Journal of Intelligent & Robotic Systems, 2018, 90(1): 189-199.

引用该论文

QU Ye-pin,HOU Wang. Attitude accuracy analysis of PnP based on error propagation theory[J]. Optics and Precision Engineering, 2019, 27(2): 479-487

屈也频,侯 旺. 基于误差传播理论的PnP问题姿态精度分析[J]. 光学 精密工程, 2019, 27(2): 479-487

被引情况

【1】沙 欧,吕源治,凌剑勇,张尧禹,付瀚毅. 三维激光扫描系统中目标点云的颜色复原. 光学 精密工程, 2020, 28(10): 2158-2167

【2】沙 欧,吕源治,凌剑勇,张尧禹,付瀚毅. 三维激光扫描系统中目标点云的颜色复原. 光学 精密工程, 2020, 28(10): 2158-2167

【3】屈也频,刘坚强,侯旺. 单目视觉高精度测量中的合作目标图形设计. 光学学报, 2020, 40(13): 1315001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF