首页 > 论文 > 中国激光 > 46卷 > 4期(pp:402004--1)

非熔透激光搭接焊SUS304奥氏体不锈钢无焊缝侧变形机理

Deformation Mechanism of SUS304 Austenitic Stainless Steel at Weldless Side in Partial Penetration Laser Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用光纤激光器对DC01镀锌钢板和SUS304奥氏体不锈钢薄板进行了激光非熔透搭接焊实验、反变形焊接实验, 测得了SUS304钢板(下板)表面微凸起的变形量和变形轮廓, 研究了非熔透焊后SUS304钢板表面微凸起变形产生的机理。研究结果表明:角变形是SUS304钢板表面微凸起产生的重要原因; 通过反变形法矫正角变形可降低微凸起的最大高度, 但微凸起区域的塑性凸起变形仍存在; 焊接过程中的角变形和热膨胀引起的塑性变形是非熔透搭接焊下SUS304不锈钢板无焊缝一侧微凸起变形的主要原因。

Abstract

Partial penetration laser welding experiment of DC01 galvanized steel plate and SUS304 austenite stainless steel as well as pre-deformation experiment are conducted by fiber laser. The deflection and deformation profile of SUS304 steel plate (lower plate) are measured and the mechanism of the micro bulging distortion of SUS304 steel plate surface after partial penetration laser welding. The results show that angular distortion is an important reason that lead to the micro bulging distortion of austenite stainless steel surface. Pre-deformation can decrease the maximum deformation height significantly. However, the plastic bulging distortion still occurs in micro bulging distortion area. It is concluded that the main reason of micro bulging distortion of SUS304 steel plate at weldless side in partial penetration laser welding is the combination of angular distortion and plastic deformation caused by thermal expansion during welding.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/cjl201946.0402004

所属栏目:激光制造

收稿日期:2018-10-23

修改稿日期:2018-12-24

网络出版日期:2019-01-08

作者单位    点击查看

刘恩泽:上海交通大学材料科学与工程学院上海市激光制造与材料表面改性重点实验室, 上海 200240
姚成武:上海交通大学材料科学与工程学院上海市激光制造与材料表面改性重点实验室, 上海 200240
谢雨凌:日立(中国)研究开发有限公司, 上海 200020
张旭东:日立(中国)研究开发有限公司, 上海 200020

联系人作者:姚成武(yaochwu@sjtu.edu.cn)

【1】Zheng R, Lin J P, Wu Q Q, et al. Progress in research on environmental corrosion-resistance of structural adhesive bonding automotive-body metal joint[J]. Journal of Materials Engineering, 2015, 43(3): 98-105.
郑锐, 林建平, 吴倩倩, 等. 结构胶胶接汽车车身金属接头抗环境腐蚀性能研究进展[J]. 材料工程, 2015, 43(3): 98-105.

【2】You M, Zheng X L. Connection structure analysis[M]. Wuhan: Huazhong University of Science and Technology Press, 2004.
游敏, 郑小玲. 连接结构分析[M]. 武汉: 华中科技大学出版社, 2004.

【3】Ma H Q, Wang Q N, Qian L, et al. Damage mode and failure mechanism of cementing structure[J]. Failure Analysis and Prevention, 2012, 7(3): 162-166.
马海全, 王倩妮, 钱雷, 等. 胶接结构破坏模式及失效机理[J]. 失效分析与预防, 2012, 7(3): 162-166.

【4】Wang H Z, Nakanishi M, Kawahito Y. Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser[J]. Journal of Materials Processing Technology, 2017, 249: 193-201.

【5】Bai P F, Wang Z J, Hu S S, et al. Sensing of the weld penetration at the beginning of pulsed gas metal arc welding[J]. Journal of Manufacturing Processes, 2017, 28: 343-350.

【6】Liang H, Kan Y, Jiang Y L, et al. Mechanical properties of laser overlap welded joints of stainless steel sheets[J]. Chinese Journal of Lasers, 2018, 45(6): 0602001.
梁行, 阚盈, 姜云禄, 等. 不锈钢薄板激光搭接焊接头的力学性能[J]. 中国激光, 2018, 45(6): 0602001.

【7】Zeng Q, Zhu S W, Fu Z H. Effects of different welding processes on microstructure and mechanical properties of SUS301L-MT stainless steel joints[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031405.
曾强, 朱绍维, 付正鸿. 不同焊接工艺对SUS301L-MT不锈钢接头组织和力学性能的影响[J]. 激光与光电子学进展, 2018, 55(3): 031405.

【8】Zhou X K, Mi G Y, Liu S, et al. Laser lap welding of 304 stainless steel/T2 red copper ultra-thin sheets[J]. Chinese Journal of Lasers, 2017, 44(8): 0802006.
周学凯, 米高阳, 刘森, 等. 304不锈钢/T2紫铜超薄板激光搭接焊[J]. 中国激光, 2017, 44(8): 0802006.

【9】Turichin G, Tsibulskiy I, Kuznetsov M, et al. Influence of the gap width on the geometry of the welded joint in hybrid laser-arc welding[J]. Physics Procedia, 2015, 78: 14-23.

【10】Hou Z G. Prediction and control of welding deformation of sheet structures[D]. Wuhan: Huazhong University of Science and Technology, 2005.
侯志刚. 薄板结构焊接变形的预测与控制[D]. 武汉: 华中科技大学, 2005.

【11】Meng X H, Li M X, Wu L X, et al. Analysis and countermeasure of defects in welding automobile galvanized steel sheet[J]. Foundry Technology, 2018, 39(3): 625-627.
孟祥海, 李孟星, 吴丽学, 等. 汽车镀锌钢板焊接缺陷分析及对策[J]. 铸造技术, 2018, 39(3): 625-627.

【12】Chen W, Ackerson P,Molian P. CO2 laser welding of galvanized steel sheets using vent holes[J]. Materials & Design, 2009, 30(2): 245-251.

【13】Reimann W, Pfriem S, Hammer T, et al. Influence of different zinc coatings on laser brazing of galvanized steel[J]. Journal of Materials Processing Technology, 2017, 239: 75-82.

【14】Ji D P. Spot welding process of galvanized steel & failure of spot welding research[D]. Changsha: Hunan University, 2012.
姬大鹏. 镀锌钢板点焊工艺及焊接缺陷研究[D]. 长沙: 湖南大学, 2012.

【15】Liao Y C, Yu M H. Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet[J]. Journal of Materials Processing Technology, 2007, 190(1/2/3): 102-108.

【16】Huang H, Wang J D, Li L Q, et al. Prediction of laser welding induced deformation in thin sheets by efficient numerical modeling[J]. Journal of Materials Processing Technology, 2016, 227: 117-128.

【17】Chakraborty S S, Racherla V, Nath A K. Thermo-mechanical finite element study on deformation mechanics during radial scan line laser forming of a bowl shaped surface out of a thin sheet[J]. Journal of Manufacturing Processes, 2018, 31: 593-604.

【18】Ai Y W, Jiang P, Wang C M, et al. Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding[J]. International Journal of Heat and Mass Transfer, 2018, 126: 779-789.

【19】Choobi M S, Haghpanahi M, Sedighi M. Prediction of welding-induced angular distortions in thin butt-welded plates using artificial neural networks[J]. Computational Materials Science, 2012, 62: 152-159.

【20】Sun X W, Yin X Q, Wang J C, et al. Analysis of buckling distortion caused by welding using 3D optical measurement technology[J]. Transactions of the China Welding Institution, 2013, 34(6): 109-112, 118.
孙向伟, 殷咸青, 王江超, 等. 采用三维光学测量技术对薄板焊接失稳变形的分析[J]. 焊接学报, 2013, 34(6): 109-112, 118.

【21】Liu J. Research on laser lap welding technology of SUS301L austenitic stainless steel for railway vehicles[D]. Changchun: Changchun University of Science and Technology, 2012.
刘佳. 轨道客车用SUS301L奥氏体不锈钢激光叠焊技术研究[D]. 长春: 长春理工大学, 2012.

【22】Fang H Y. Welding structure[M]. Beijing: China Machine Press, 2008.
方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2008.

【23】Deng D A, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37(3): 269-277.

引用该论文

Liu Enze,Yao Chengwu,Xie Yuling,Zhang Xudong. Deformation Mechanism of SUS304 Austenitic Stainless Steel at Weldless Side in Partial Penetration Laser Welding[J]. Chinese Journal of Lasers, 2019, 46(4): 0402004

刘恩泽,姚成武,谢雨凌,张旭东. 非熔透激光搭接焊SUS304奥氏体不锈钢无焊缝侧变形机理[J]. 中国激光, 2019, 46(4): 0402004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF