量子光学学报, 2019, 25 (1): 48, 网络出版: 2019-04-05  

原子系统中基于关联相位涨落的量子干涉调控

Manipulation of Quantum Interference with Correlated Phase Fluctuation in Atomic System
作者单位
1 山西大学 光电研究所,量子光学与光量子器件国家重点实验室,山西 太原 030006
2 浙江大学 物理系,光学研究所,浙江 杭州 310027
摘要
提出了一种利用原子系统的关联相位涨落调控量子干涉的方法。原子之间的碰撞以及原子与外界热库的耦合会导致原子能级产生随机的相位涨落。研究了不同能级的相位涨落的强度和他们之间的关联对原子相干性和量子干涉的影响。结果表明,正关联相位涨落可以增强相消量子干涉(探针光的吸收减弱),而反关联相位涨落可以增强相长量子干涉(吸收增强)。在特定条件下量子干涉消失,原子对探针光的响应由Autler-Townes分裂决定。最后,研究了耦合光Rabi频率对量子干涉的影响。当耦合光较弱时,可以利用原子能级的关联相位涨落有效地调控量子干涉;当耦合光很强时,量子干涉非常弱,可以被忽略。
Abstract
The manipulation of quantum interference using correlated phase fluctuation in an atomic system is proposed. The collisions among atoms and the coupling between the atoms and the external reservoir environment result in the random phase fluctuations of the atomic energy levels. The effect of the phase fluctuations and their correlation on the atomic coherence and quantum interference is studied. The results show that the correlated and anticorrelated phase fluctuations lead to the destructive quantum interference (suppressed absorption of the probe field) and the constructive quantum interference (enhanced absorption of the probe field),respectively. The quantum interference vanishes under certain condition,and the response of the atoms to the probe field is determined by the Autler-Townes splitting. Finally,the influence of the Rabi frequency of the coupling field on the quantum interference is studied. When the coupling field is relatively weak,the quantum interference can be efficiently manipulated using the correlated phase fluctuations. When the coupling field is strong,the quantum interference can be ignored.

武晋泽, 刘晋宏, 张月颖, 贺炎炎, 张俊香. 原子系统中基于关联相位涨落的量子干涉调控[J]. 量子光学学报, 2019, 25(1): 48. WU Jin-ze, LIU Jin-hong, ZHANG Yue-ying, HE Yan-yan, ZHANG Jun-xiang. Manipulation of Quantum Interference with Correlated Phase Fluctuation in Atomic System[J]. Acta Sinica Quantum Optica, 2019, 25(1): 48.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!