首页 > 论文 > 光学 精密工程 > 27卷 > 1期(pp:101-109)

高阈值长脉宽响应的微流体惯性开关

Microfluidic inertial switch with high threshold and long pulse-width response

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了实现智能武器电源管理, 针对正常发射和勤务跌落两种典型的加速度信号, 提出了一种高阈值长脉宽响应的微流体惯性开关。该开关主要由环形微通道和三级毛细阀组成, 具有识别两种典型加速度的能力, 并在正常发射后坐加速度的作用下实现可靠接通。首先, 介绍了开关的设计概念及工作原理。然后, 采用湿法刻蚀和磁控溅射金属技术制作了样机。最后, 结合有限元仿真和样机实验验证了开关的功能。有限元仿真分析表明: 该开关在幅值为12 000g, 脉宽为300 μs的勤务跌落载荷下保持断开, 在幅值为20 000g, 脉宽为4 ms的后坐载荷下可靠接通, 开关阈值为3 300g。实验结果表明: 该开关在幅值为12 800g, 脉宽为219 μs的勤务跌落载荷下保持断开, 开关的静态阈值为3 257.2g~3 317.3g,开关的理论阈值为3 590.9g, 理论公式能较好地预测开关的阈值。

Abstract

In order to realize the power management of intelligent weapons, a microfluidic inertial switch with a high threshold and long pulse width response was proposed for two typical acceleration signals of launch and drop. The switch is mainly composed of a circular microchannel and a three-stage capillary valve that has the ability to identify the two typical accelerations and can be reliably connected under the action of the normal launching acceleration. First, the design concept of the switch was introduced, and the working principle of the switch was analyzed. Next, the prototype was fabricated by wet etching and magnetron sputtering. Finally, the function of the switch was verified by finite element simulation and prototype experiments. The finite element simulation analysis shows that the switch remains disconnected under the drop load (amplitude: 12 000g, pulse width: 300 μs) and is reliably connected under the rear load (amplitude: 20 000g, pulse width: 4 ms). The threshold of the switch is 3 300g. The experimental results show that the switch remains disconnected under the service drop load (amplitude: 12 800g, pulse width: 219 μs). The static threshold of the switch is 3 257.2~3 317.3g. The theoretical threshold of the switch is 3 590.9g, and the theoretical formula can predict the threshold of the switch with a higher accuracy. The results show that the designed switch can identify two typical accelerations and realize reliable connections.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TM564;TH824.4

DOI:10.3788/ope.20192701.0101

所属栏目:微纳技术与精密机械

基金项目:国家自然科学基金资助项目(No.51475245)

收稿日期:2018-06-07

修改稿日期:2018-08-01

网络出版日期:--

作者单位    点击查看

李嘉杰:南京理工大学 机械工程学院, 江苏 南京 210094
聂伟荣:南京理工大学 机械工程学院, 江苏 南京 210094
刘国伟:南京理工大学 机械工程学院, 江苏 南京 210094

联系人作者:李嘉杰(jiajieli_1993@sina.com)

备注:李嘉杰(1993-), 男, 广东江门人, 博士研究生, 2016年于广州大学获得学士学位, 研究方向为智能探测与控制。

【1】步超,聂伟荣,罗乔,等. 齿形结构的长脉冲敏感型微加速度开关[J]. 光学 精密工程, 2016, 24(11): 2730-2737.
BU CH, NIE W R, LUO Q, et al.. Micro acceleration switch with tooth-shaped structure for long pulse sensitivity [J]. Opt. Precision Eng., 2016, 24(11): 2730-2737. (in Chinese)

【2】CAO Y, XI Z W, YU P X, et al.. A MEMS inertial switch with a single circular mass for universal sensitivity [J]. Journal of Micromechanics & Microengineering, 2015, 25(10): 105005.

【3】CHEN W G, WANG Y, DING G F, et al.. Simulation, fabrication and characterization of an all-metal contact-enhanced triaxial inertial microswitch with low axial disturbance [J]. Sensors & Actuators A Physical, 2014, 220(4636): 194-203.

【4】GERSON Y, SCHREIBER D, GRAU H, et al.. Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process [J]. Journal of Micromechanics & Microengineering, 2014, 24(2): 025008.

【5】ALMEIDA L, RAMADOSS R, JACKSON R, et al.. Study of the electrical contact resistance of multi-contact MEMS relays fabricated using the MetalMUMPs process [J]. Journal of Micromechanics & Microengineering, 2006, 16(7): 1189-1194.

【6】YOO K, KIM J. A novel configurable MEMS inertial switch using microscale liquid-metal droplet [C]. International Conference on Micro Electro Mechanical Systems IEEE, 2009: 793-796.

【7】YOO K, PARK U, KIM J. Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel [J]. Sensors & Actuators A Physical, 2011, 166(2): 234-240.

【8】USUNG P, KWANGHYUN Y, JOONWON K. Development of a MEMS digital accelerometer (MDA) using a microscale liquid metal droplet in a microstructured photosensitive glass channel [J]. Sensors & Actuators A Physical, 2010, 159(1): 51-57.

【9】SHEN T, ZHANG D, HUANG L, et al.. An automatic-recovery inertial switch based on a gallium-indium metal droplet [J]. Journal of Micromechanics & Microengineering, 2016, 26(11): 115016.

【10】HUANG Y, SUNG W, LAI W, et al.. Design and implementation of time-delay switch triggered by inertia load [C]. International Conference on MICRO Electro Mechanical Systems IEEE, 2013: 729-732.

【11】KUO J C, YANG Y J. A passive hydrogel-based inertial switch integrated with micromachined L-C resonator [C]. International Conference on Micro Electro Mechanical Systems IEEE, 2012: 515-518.

【12】KUO J C, KUO P H, LAI Y T, et al.. A passive inertial switch using MWCNT-hydrogel composite with wireless interrogation capability [J]. Journal of Microelectromechanical Systems, 2013, 22(3): 646-654.

【13】黄刘, 聂伟荣, 王晓锋,等. 抗高过载微流体惯性开关[J]. 光学 精密工程, 2016, 24(3): 526-532.
HUANG L, NIE W R, WANG X F, et al.. A microfluidic inertial switch with response characteristics to high acceleration [J]Opt. Precision Eng., 2016, 24(3): 526-532. (in Chinese)

【14】CHO H, KIM H Y, KANG J Y, et al.. How the capillary burst microvalve works [J]. Journal of Colloid & Interface Science, 2007, 306(2): 379-385.

引用该论文

LI Jia-jie,NIE Wei-rong,LIU Guo-wei. Microfluidic inertial switch with high threshold and long pulse-width response[J]. Optics and Precision Engineering, 2019, 27(1): 101-109

李嘉杰,聂伟荣,刘国伟. 高阈值长脉宽响应的微流体惯性开关[J]. 光学 精密工程, 2019, 27(1): 101-109

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF