首页 > 论文 > 光电工程 > 46卷 > 3期(pp:1-7)

全息掺杂光致聚合物的吸收光谱定量化分析

Monitoring and optimization of the synthesis process of the holographic doped photopolymers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

掺杂光致聚合物的合成过程对其性能的影响至关重要。目前掺杂光致聚合物的合成过程优化主要依靠大量实验数据和操作者实验经验。本文提出了一种利用掺杂光致聚合物的吸收光谱定量化分析光致聚合物合成过程的方法。该方法通过对掺杂光致聚合物制备过程中的各个阶段样品进行吸收光谱测量分析,揭示样品制备过程中吸收光谱随制备过程变化的趋势,并利用吸收光谱法定量监测聚合物预聚合过程的程度和速率,为科学定量优化掺杂光致聚合物制备过程提供了新方法。

Abstract

The synthesis process of doped photopolymer has a significant impact on its properties. The tradional optimization method for the synthesis process of doped photopolymers depends on experimental parameters and experimental experience. A method for quantitatively monitoring and optimization of the synthesis process of doped photopolymers by absorption spectrum is presented in this paper. The absorption spectra of samples in different steps of the preparation are measured and analyzed. The change rule of the absorption spectra in preparation process is revealed. Quantitative monitoring of the progress and the synthesis rate of photopolymers could be realized by the proposed method. This method brings new possibility to quantitative optimization in the preparation process of doped photopolymers.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN26;O438.1

DOI:10.12086/oee.2019.180620

所属栏目:科研论文

基金项目:国家自然科学基金项目(61775117);固体激光技术重点实验室基金项目(9140C010102150C04017)

收稿日期:2018-11-27

修改稿日期:2019-01-29

网络出版日期:--

作者单位    点击查看

曹良才:清华大学精密仪器系,精密测试技术及仪器国家重点实验室,北京 100084
吴圣涵:清华大学精密仪器系,精密测试技术及仪器国家重点实验室,北京 100084
何泽浩:清华大学精密仪器系,精密测试技术及仪器国家重点实验室,北京 100084
李瑶瑶:清华大学精密仪器系,精密测试技术及仪器国家重点实验室,北京 100084
金国藩:清华大学精密仪器系,精密测试技术及仪器国家重点实验室,北京 100084

联系人作者:联系作者

备注:曹良才(1977-),男,博士,副教授,主要从事全息与光学信息处理方面的研究。E-mail:clc@tsinghua.edu.cn

【1】Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891–6894.

【2】Vaia R A, Maguire J F. Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers[J]. Chemistry of Materials, 2007, 19(11): 2736–2751.

【3】Zhuo D H, Tao S Q, Shi M Q, et al. Shrinkage of photopolymer for holographic recording materials[J]. Chinese Journal of Lasers, 2007, 34(11): 1543–1547.
禚渡华, 陶世荃, 施盟泉, 等. 全息记录材料光致聚合物的收缩率[J]. 中国激光, 2007, 34(11): 1543–1547.

【4】Fujii R, Guo J X, Klepp J, et al. Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics[J]. Optics Letters, 2014, 39(12): 3453–3456.

【5】Ashley J, Bernal M P, Burr G W, et al. Holographic data storage technology[J]. IBM Journal of Research and Development, 2000, 44(3): 341–368.

【6】Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575–2579.

【7】Sugawara S, Murase K, Kitayama T. Holographic recording by dye-sensitized photopolymerization of acrylamide[J]. Applied Optics, 1975, 14(2): 378–382.

【8】Lin S H, Hsu K Y, Chen W Z, et al. Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage[J]. Optics Letters, 2000, 25(7): 451–453.

【9】Hsu K Y, Lin S H, Hsiao Y N, et al. Experimental characterization of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for volume holographic storage[J]. Optical Engineering, 2003, 42(5): 1390–1396.

【10】Cody D, Gribbin S, Mihaylova E, et al. Low-toxicity photopolymer for reflection holography[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18481–18487.

【11】Navarro-Fuster V, Ortu?o M, Fernández R, et al. Peristrophic multiplexed holograms recorded in a low toxicity photopolymer[J]. Optical Materials Express, 2017, 7(1): 133–147.

【12】Li C M Y, Cao L C, Li J M, et al. Improvement of volume holographic performance by plasmon-induced holographic absorption grating[J]. Applied Physics Letters, 2013, 102(6): 061108.

【13】Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017–5028.

【14】Cao L C, Wu S H, Hao J P, et al. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite[J]. Applied Physics Letters, 2017, 111(14): 141104.

【15】Vaia R A, Dennis C L, Natarajan L V, et al. One-step, micrometer-scale organization of nano-and mesoparticles using holographic photopolymerization: a generic technique[J]. Advanced Materials, 2001, 13(20): 1570–1574.

【16】Suzuki N, Tomita Y, Ohmori K, et al. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording[J]. Optics Express, 2006, 14(26): 12712–12719.

【17】Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619–4627.

【18】Tomita Y, Urano H, Fukamizu T A, et al. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles[J]. Optics Letters, 2016, 41(6): 1281–1284.

【19】Ni M L, Peng H Y, Liao Y G, et al. 3D Image storage in photopolymer/ZnS nanocomposites tailored by “Photoinitibitor”[J]. Macromolecules, 2015, 48(9): 2958–2966.

【20】Liu S, Gleeson M R, Guo J X, et al. High Intensity response of photopolymer materials for holographic grating formation[J]. Macromolecules, 2010, 43(22): 9462–9472.

【21】Gallego S, Ortuno M, Neipp C, et al. Overmodulation effects in volume holograms recorded on photopolymers[J]. Optics Communications, 2003, 215(4–6): 263–269.

【22】Qi Y, Tolstik E, Li H Y, et al. Study of PQ/PMMA photopolymer. Part 2: experimental results[J]. Journal of the Optical Society of America B, 2013, 30(12): 3308–3315.

【23】Gallego S, Neipp C, Ortu?o M, et al. Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer[J]. Optics Communications, 2008, 281(6): 1480–1485.

【24】Martínez F J, Fernández R, Márquez A, et al. Exploring binary and ternary modulations on a PA-LCoS device for holographic data storage in a PVA/AA photopolymer[J]. Optics Express, 2015, 23(16): 20459–20479.

【25】Pramitha V, Das B, Joseph J, et al. High efficiency panchromatic photopolymer recording material for holographic data storage systems[J]. Optical Materials, 2016, 52: 212–218.

【26】Tomita Y, Furushima K, Ochi K, et al. Organic nanoparticle(Hyperbranched Polymer)-dispersed photopolymers for volume holographic storage[J]. Applied Physics Letters, 2006, 88(7): 071103.

【27】Sun C X, Wang S L, Li R P, et al. Holographic characteristic parameters of a water-resistant photopolymer in different thickness[J]. Laser Technology, 2008, 32(5): 545–547, 550.
孙彩霞, 王素莲, 李若平, 等. 一种抗湿性光聚物在不同厚度下的全息特性[J]. 激光技术, 2008, 32(5): 545–547, 550.

引用该论文

Cao Liangcai,Wu Shenghan,He Zehao,Li Yaoyao,Jin Guofan. Monitoring and optimization of the synthesis process of the holographic doped photopolymers[J]. Opto-Electronic Engineering, 2019, 46(3): 1-7

曹良才,吴圣涵,何泽浩,李瑶瑶,金国藩. 全息掺杂光致聚合物的吸收光谱定量化分析[J]. 光电工程, 2019, 46(3): 1-7

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF