首页 > 论文 > 激光与光电子学进展 > 56卷 > 8期(pp:80601--1)

基于SPS光纤结构的高灵敏度曲率传感器

High Sensitivity Curvature Sensor Based on SPS Fiber Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于单模-保偏-单模(SPS)结构的高灵敏度曲率光纤传感器,该传感器将保偏光纤(PMF)的两端熔接在两段单模光纤之间。研究了传感器的曲率传感性能,以及保偏光纤的长度对传感器曲率灵敏度的影响。结果表明,随着曲率的增大,传感器输出光谱出现明显红移现象;保偏光纤长度对传感器的曲率灵敏度有重要的影响,当保偏光纤长度为11 cm,曲率为0.43~1.37 m-1时,获得最大灵敏度为59.849 nm/m-1的传感器。与其他光纤结构的传感器相比,该传感器具有结构简单、易于制造、灵敏度高等优点,可用于结构健康监测传感领域。

Abstract

A high sensitivity optical fiber curvature sensor with a fiber structure is proposed based on single mode-polarization maintaining-single mode (SPS), which is fabricated by splicing a piece of polarization-maintaining fiber (PMF) between two sections of single mode fiber. The curvature sensing performance and the effect of the length of PMF on the curvature sensitivity of this sensor are studied in experiments. The results show that, the output spectrum of this sensor shows an obviously red-shift phenomenon with the increase of curvature. In addition, the length of PMF has a significance influence on the curvature sensitivity of this sensor. In the curvature range from 0.43 m-1 to 1.37 m-1, the maximum sensitivity can reach to 59.849 nm/m-1 when the length of PMF is 11 cm. This sensor has advantages of simple structure, easy fabrication and high sensitivity compared with the other optical fiber sensors with an optical fiber structure, and it can be used in the field of the structural health monitoring.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/LOP56.080601

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61565002,1307096)、广西重点研究开发项目(AB17129027)、广西研究生教育创新计划项目(XYCSZ2017083)

收稿日期:2018-09-14

修改稿日期:2018-10-12

网络出版日期:2018-11-08

作者单位    点击查看

陆杭林:广西师范大学物理科学与技术学院, 广西 桂林 541004暨南大学光子技术研究院, 广东 广州 510632
胡君辉:广西师范大学物理科学与技术学院, 广西 桂林 541004

联系人作者:胡君辉(hujh@mailbox.gxnu.edu.cn)

【1】Cano-Contreras M, Guzman-Chavez A D, Mata-Chavez R I, et al. All-fiber curvature sensor based on an abrupt tapered fiber and a Fabry-Pérot interferometer[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2213-2216.

【2】Dong S D, Dong B, Yu C Y, et al. High sensitivity optical fiber curvature sensor based on cascaded fiber interferometer[J]. Journal of Lightwave Technology, 2018, 36(4): 1125-1130.

【3】Wang T T, Li Z P, Shen J. A design of optic fiber pressure sensor based on micro in-fiber ellipsoidal cavity[J]. Semiconductor Optoelectronics, 2017, 38(6): 789-805.

【4】Tang J, Yin G L, Liu S, et al. Gas pressure sensor based on CO2-laser-induced long-period fiber grating in air-core photonic bandgap fiber[J]. IEEE Photonics Journal, 2015, 7(5): 1-7.

【5】Zhang S, Huang Z H, Li G F, et al. Temperature-insensitive strain sensing based on few mode fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0120002.
张珊, 黄战华, 李桂芳, 等. 温度不敏感的少模光纤应变传感[J]. 中国激光, 2017, 44(2): 0120002.

【6】Qian Z H, Gong H P, Yang X, et al. Optical fiber temperature sensor based on modal interferometer comprising two peanut-shape structures[J]. Microwave and Optical Technology Letters, 2015, 57(12): 2841-2844.

【7】Kumar A, Jindal R, Varshney R K, et al. A fiber-optic temperature sensor based on LP01-LP02 mode interference[J]. Optical Fiber Technology, 2000, 6(1): 83-90.

【8】Lu H L, Yue Y L, Du J, et al. Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop[J]. Optics Express, 2018, 26(15): 18920-18927.

【9】An G W, Hao X P, Li S G, et al. D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance[J]. Applied Optics, 2017, 56(24): 6988-6992.

【10】Sun H, Hu M L, Qiao X G, et al. Fiber refractive index sensor based on fiber core mismatch multimode interference[J]. Chinese Journal of Lasers, 2012, 39(2): 0205001.
孙浩, 忽满利, 乔学光, 等. 基于纤芯失配多模干涉的光纤折射率传感器[J]. 中国激光, 2012, 39(2): 0205001.

【11】Qian C L, Chen M Y. Investigation on refractive index sensing based on interference effect in multimode optical fiber[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050601.
钱春霖, 陈明阳. 基于多模干涉效应的光纤折射率传感技术研究[J]. 激光与光电子学进展, 2016, 53(5): 050601.

【12】Wang Q, Zou H, Wei W. Strain and refractive index sensor based on core-offset splicing fibers[J]. Acta Optica Sinica, 2017, 37(10): 1006005.
王旗, 邹辉, 韦玮. 基于偏芯熔接光纤的应力与折射率传感器[J]. 光学学报, 2017, 37(10): 1006005.

【13】Dong Y, Xiao S Y, Xiao H, et al. An optical liquid-level sensor based on D-shape fiber modal interferometer[J]. IEEE Photonics Technology Letters, 2017, 29(13): 1067-1070.

【14】Tong B. Double-fiber Fabry-Perot interferometry optical fiber liquid level sensor[J]. Proceedings of SPIE, 2012, 8351: 8351OT.

【15】Shao M, Han L, Zhao X, et al. Liquid level sensor based on in-fiber Michelson interferometer[J]. Acta Optica Sinica, 2018, 38(3): 0328021.
邵敏, 韩亮, 兆雪, 等. 基于在线型光纤迈克耳孙干涉仪的液位传感器[J]. 光学学报, 2018, 38(3): 0328021.

【16】Guzman-Sepulveda J R, Hernandez-Romano I, Torres-Cisneros M, et al. Fiber optic vibration sensor based on multimode interference effects[C]∥2012 Conference on Lasers and Electro-Optics, May 6-11, 2012, San Jose, California United States. Washington: Optical Society of America, 2012: JW2A.117.

【17】Ran Y L, Xia L, Han Y, et al. Vibration fiber sensors based on SM-NC-SM fiber structure[J]. IEEE Photonics Journal, 2015, 7(2): 14979341.

【18】Wang H R, Gao R X, Yin Y X, et al. Vibration sensor based on single mode-multimode optic-fiber cantilever structure[J]. Laser & Optoelectronics Progress, 2016, 53(6): 060601.
王红日, 高仁喜, 殷焱煊, 等. 基于单模-多模光纤悬臂梁型振动传感器的研究[J]. 激光与光电子学进展, 2016, 53(6): 060601.

【19】Yan S Z, Chyan L S. Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring[J]. Optical Fiber Technology, 2010, 16(2): 100-109.

【20】Bernini R, Minardo A, Zeni L. Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors[J]. Smart Materials and Structures, 2008, 17(1): 015006.

【21】Fu G W, Li Y P, Fu X H, et al. Temperature insensitive curvature sensor based on cascading photonic crystal fiber[J]. Optical Fiber Technology, 2018, 41: 64-68.

【22】Gong Y, Zhao T, Rao Y J, et al. All-fiber curvature sensor based on multimode interference[J]. IEEE Photonics Technology Letters, 2011, 23(11): 679-681.

【23】Sun M M, Wang J F, Jin Y X, et al. All-fiber Mach-Zehnder interferometer based on lateral-offset and peanut shape structure[J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1560-1564.
孙明明, 王剑锋, 金永兴, 等. 基于错位和花生形结构的全光纤马赫-曾德干涉仪的研究[J]. 光谱学与光谱分析, 2016, 36(5): 1560-1564.

【24】Zhang C, Zhao J F, Miao C Y, et al. High-sensitivity all single-mode fiber curvature sensor based on bulge-taper structures modal interferometer[J]. Optics Communications, 2015, 336: 197-201.

【25】Chen D F, Lu P, Liu D M. Highly sensitive curvature sensors based on polarization-maintaining photonic crystal fibers[J]. Laser Technology, 2015, 39(4): 450-452.
陈大凤, 鲁平, 刘德明. 基于保偏光子晶体光纤的高灵敏度曲率传感器[J]. 激光技术, 2015, 39(4): 450-452.

【26】Wang Y P, Richardson D, Brambilla G, et al. Intensity measurement bend sensors based on periodically tapered soft glass fibers[J]. Optics Letters, 2011, 36(4): 558-560.

【27】Gander M J, MacPherson W N, McBride R, et al. Bend measurement using Bragg gratings in multicore fibre[J]. Electronics Letters, 2000, 36(2): 120-121.

【28】Ding J F, Zhang A P, Shao L Y, et al. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor[J]. IEEE Photonics Technology Letters, 2005, 17(6): 1247-1249.

【29】Gong H P, Yang X, Ni K, et al. An optical fiber curvature sensor based on two peanut-shape structures modal interferometer[J]. IEEE Photonics Technology Letters, 2014, 26(1): 22-24.

引用该论文

Lu Hanglin,Hu Junhui. High Sensitivity Curvature Sensor Based on SPS Fiber Structure[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080601

陆杭林,胡君辉. 基于SPS光纤结构的高灵敏度曲率传感器[J]. 激光与光电子学进展, 2019, 56(8): 080601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF