首页 > 论文 > 激光与光电子学进展 > 56卷 > 8期(pp:81003--1)

基于Log-Gabor滤波与显著图融合优化的3D显著性检测

3D Image Saliency Detection Based on Log-Gabor Filtering and Saliency Map Fusion Optimization

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于Log-Gabor滤波的纹理和深度图融合优化的立体图像显著性检测模型,利用平面图像的显著性结合纹理与深度特征检测立体图像的显著性。通过改进的基于图的流行排序算法计算左视点的显著图;提取左视点图像的纹理特征图以及立体图像的深度特征图,利用Log-Gabor滤波器分别计算深度显著图和纹理显著图;再利用线性加权融合方法将上述3个显著图融合为立体(3D)显著图;最后利用中心偏爱和视觉敏锐度增强3D显著图。实验利用公开的眼动跟踪数据库进行测试,结果表明,所提算法具有很好的检测效果,优于文献报道的其他3D显著性模型。

Abstract

A saliency detection model is proposed based on Log-Gabor filtering and saliency map fusion optimization of stereoscopic images, in which the image saliency is detected by the planar image saliency combined with the texture and depth features. First, the left view saliency map is calculated by the improved graph-based manifold ranking algorithm. Second, the left view texture features and the depth features from stereoscopic images are extracted, and the texture and depth saliency maps are computed by the Log-Gabor filtering method, respectively. Third, the above three saliency maps are integrated into a stereoscopic (3D) saliency map by the weighted linear combination (WLC) method. Finally, the 3D saliency map is enhanced by the center-bias factor and visual acuity. The experimental results on a public eye tracking dataset show that the proposed model possesses a good detection performance and is superior to the existing 3D visual saliency detection models.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.41

DOI:10.3788/lop56.081003

所属栏目:图像处理

基金项目:国家自然科学基金(61771223)、江苏省自然科学基金(BK20171142)

收稿日期:2018-09-25

修改稿日期:2018-10-22

网络出版日期:2018-11-13

作者单位    点击查看

纵宝宝:江南大学物联网工程学院, 江苏省模式识别与计算智能工程实验室, 江苏 无锡 214122
李朝锋:上海海事大学物流科学与工程研究院, 上海 200135
桑庆兵:江南大学物联网工程学院, 江苏省模式识别与计算智能工程实验室, 江苏 无锡 214122

联系人作者:桑庆兵(sangqb@163.com)

【1】Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

【2】Yang C, Zhang L H, Lu H C, et al. Saliency detection via graph-based manifold ranking[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 2013: 3166-3173.

【3】Liu F, Shen T S, Lou S L, et al. Deep network saliency detection based on global model and local optimization[J]. Acta Optica Sinica, 2017, 37(12): 1215005.
刘峰, 沈同圣, 娄树理, 等. 全局模型和局部优化的深度网络显著性检测[J]. 光学学报, 2017, 37(12): 1215005.

【4】Zhang S L, Xie L B. Salient detection based on all convolutional feature combination[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101502.
张松龙, 谢林柏. 基于全部卷积特征融合的显著性检测[J]. 激光与光电子学进展, 2018, 55(10): 101502.

【5】Dittrich T, Kopf S, Schaber P, et al. Saliency detection for stereoscopic video[C]∥Proceedings of the 4th ACM Multimedia Systems Conference, February 28-March 01, 2013, Oslo, Norway. New York: ACM, 2013: 12-23.

【6】Wang J L, Dasilva M P, Lecallet P, et al. Computational model of stereoscopic 3D visual saliency[J]. IEEE Transactions on Image Processing, 2013, 22(6): 2151-2165.

【7】Fang Y M, Wang J L, Narwaria M, et al. Saliency detection for stereoscopic images[C]∥2013 Visual Communications and Image Processing (VCIP), November 17-20, 2013, Kuching, Malaysia. New York: IEEE, 2013: 1-6.

【8】Qi F, Zhao D B, Liu S H, et al. 3D visual saliency detection model with generated disparity map[J]. Multimedia Tools and Applications, 2017, 76(2): 3087-3103.

【9】Zhou Y, He Y J, Tang X H, et al. Incorporation of multi-dimensional binocular perceptual characteristics to detect stereoscopic video saliency[J]. Journal of Image and Graphics, 2017, 22(3): 305-314.
周洋, 何永健, 唐向宏, 等. 融合双目多维感知特征的立体视频显著性检测[J]. 中国图像图形学报, 2017, 22(3): 305-314.

【10】Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

【11】Borji A, Sihite D N, Itti L. Salient object detection: A benchmark[M]∥Borji A, Sihite D N, Itti L. Computer Vision-ECCV 2012. Berlin, Heidelberg: Springer, 2012: 414-429.

【12】Field D J. Relations between the statistics of natural images and the response properties of cortical cells[J]. Journal of the Optical Society of America A, 1987, 4(12): 2379.

【13】Tseng P H, Carmi R, Cameron I G M, et al. Quantifying center bias of observers in free viewing of dynamic natural scenes[J]. Journal of Vision, 2009, 9(7): 1-16.

【14】Geisler W S, Perry J S. Real-time foveated multiresolution system for low-bandwidth video communication[J]. Proceedings of SPIE, 1998, 3299: 294-306.

【15】Wei Y C, Wen F, Zhu W J, et al. Geodesic saliency using background priors[C]∥European Conference on Computer Vision, October 7-13, Florence, Italy. Heidelberg: Springer, 2012, 7547: 29-42.

【16】Zhang L, Gu Z Y, Li H Y. SDSP: A novel saliency detection method by combining simple priors[C]∥2013 IEEE International Conference on Image Processing, September 15-18, 2013, Melbourne, VIC, Australia. New York: IEEE, 2013: 171-175.

【17】Qin Y, Lu H C, Xu Y Q, et al. Saliency detection via cellular automata[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 110-119.

引用该论文

Zong Baobao,Li Chaofeng,Sang Qingbing. 3D Image Saliency Detection Based on Log-Gabor Filtering and Saliency Map Fusion Optimization[J]. Laser & Optoelectronics Progress, 2019, 56(8): 081003

纵宝宝,李朝锋,桑庆兵. 基于Log-Gabor滤波与显著图融合优化的3D显著性检测[J]. 激光与光电子学进展, 2019, 56(8): 081003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF