首页 > 论文 > 激光与光电子学进展 > 56卷 > 8期(pp:81201--1)

激光点源与线源激发表面波与钢轨缺陷作用的有限元仿真和实验

Finite Element Simulation and Experiment on Interaction of Surface Waves Excited by Laser Point or Line Source with Rail Defects

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了点源、线源激光激发超声波对钢轨表面缺陷检测的影响。使用有限元法对比了这两种激发方式的声场、声波信号及对钢轨表面缺陷检测的有效性。通过有限元仿真分别对水平、垂直、斜45°的钢轨表面缺陷进行了检测并进行了实验验证。实验与仿真结果一致表明,由激光线源激发的声表面波指向性好、信号幅值大,更利于钢轨表面缺陷的检测,且对不同类型的钢轨表面缺陷均具有较好的检测能力。

Abstract

The influence of ultrasonic wave excited by a laser point or line source on the detection of rail surface defects is investigated. In addition, the sound fields, acoustic signals and the detection effectiveness of rail surface defects under these two types of excitation modes are compared by the finite element method. The detection of horizontal, vertical, and oblique 45° rail surface defects is simulated by the finite element method and the corresponding experimental test is also conducted. The consistency between experimental and simulated results shows that the acoustic surface wave excited by a laser line source possesses good directionality and a high signal amplitude, which is more conducive to the detection of rail surface defects and has a good detection ability for different types of rail surface defects.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/lop56.081201

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(61405167,61471304)、中央高校基本科研业务费专项(2018GF10)

收稿日期:2018-11-01

修改稿日期:2018-11-07

网络出版日期:2018-11-11

作者单位    点击查看

隋皓:西南交通大学物理科学与技术学院, 四川 成都 610031
高晓蓉:西南交通大学物理科学与技术学院, 四川 成都 610031
罗林:西南交通大学物理科学与技术学院, 四川 成都 610031
朱宏娜:西南交通大学物理科学与技术学院, 四川 成都 610031
钟云杰:西南交通大学物理科学与技术学院, 四川 成都 610031

联系人作者:朱宏娜(hnzhu@swjtu.edu.cn); 隋皓(suihaoabc@163.com);

【1】Ferreira L, Murray M H. Modelling rail track deterioration and maintenance: Current practices and future needs[J]. Transport Reviews, 1997, 17(3): 207-221.

【2】Clark R. Rail flaw detection: Overview and needs for future developments[J]. NDT & E International, 2004, 37(2): 111-118.

【3】Schoech W. Combating rail surface fatigue in Europe by head check grinding[J]. Rail Engineering International, 2004, 33(1): 6-8.

【4】Yang J, Ume I C. Laser ultrasonic technique for evaluating solder bump defects in flip chip packages using modal and signal analysis methods[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(4): 920-932.

【5】Wooh S C, Wang J. Laser ultrasonic detection of rail defects[J]. AIP Conference Proceedings, 2002, 615(1): 1819-1826.

【6】Zhao Y, Liu S, Ma J, et al. Investigation and application of laser-EMAT testing fatigue damage of railhead[J]. Chinese Journal of Lasers, 2014, 41(s1): s108008.
赵扬, 刘帅, 马健, 等. 混合式激光超声技术的钢轨轨头疲劳损伤无损检测研究与应用[J]. 中国激光, 2014, 41(s1): s108008.

【7】Pantano A, Cerniglia D.Simulation of laser generated ultrasound with application to defect detection[J]. Applied Physics A, 2008, 91(3): 521-528.

【8】Pantano A, Cerniglia D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE[J]. Applied Physics A, 2010, 98(2): 327-336.

【9】Wang J, Feng Q B. Residual stress determination of rail tread using a laser ultrasonic technique[J]. Laser Physics, 2015, 25(5): 056104.

【10】Zhong Y J, Gao X R, Luo L, et al. Simulation of laser ultrasonics for detection of surface-connected rail defects[J]. Journal of Nondestructive Evaluation, 2017, 36: 70.

【11】Li H Y, Li Q X, Wang Z B, et al. Positioning detection of defects in thread of tubular member by laser ultrasonic[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101202.
李海洋, 李巧霞, 王召巴, 等. 圆管构件螺纹处缺陷的激光超声定位检测[J]. 激光与光电子学进展, 2018, 55(10): 101202.

【12】Li H Y, Li Q X, Wang Z B, et al. Detection and evaluation of surface defects based on critical frequency method by laser ultrasonic[J]. Acta Optica Sinica, 2018, 38(7): 0712003.
李海洋, 李巧霞, 王召巴, 等. 基于激光超声临界频率的表面缺陷检测与评价[J]. 光学学报, 2018, 38(7): 0712003.

【13】Sun K H, Shen Z H, Li Y L, et al. Inspection of material internal defects using double shadow method based on laser ultrasonic reflected shear waves[J]. Chinese Journal of Lasers, 2018, 45(7): 0710001.
孙凯华, 沈中华, 李远林, 等. 材料内部缺陷的激光超声反射横波双阴影检测方法[J]. 中国激光, 2018, 45(7): 0710001.

【14】Li J Y, Shen Z H, Ni X W, et al. Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique[J]. Chinese Journal of Lasers, 2018, 45(9): 0904003.
李俊燕, 沈中华, 倪晓武, 等. 基于合成孔径聚焦技术的激光超声无损检测方法研究[J]. 中国激光, 2018, 45(9): 0904003.

【15】Shen Z H, Yuan L, Zhang H C, et al. Laser ultrasound in solids[M]. Beijing: Post & Telecom Press, 2015: 57-58.
沈中华, 袁玲, 张宏超, 等. 固体中的激光超声[M]. 北京:人民邮电出版社, 2015: 57-58.

【16】Mineo C, Cerniglia D, Pantano A. Numerical study for a new methodology of flaws detection in train axles[J]. Ultrasonics, 2014, 54(3): 841-849.

【17】Pantano A, Cerniglia D. Simulation of laser generated ultrasound with application to defect detection[J]. Applied Physics A, 2008, 91(3): 521-528.

【18】Ni C, Dong L, Shen Z, et al. Numerical simulation study of defect detections by using laser array generated giant acoustic waves[J]. International Journal of Thermophysics, 2015, 36(5/6): 1236-1243.

引用该论文

Sui Hao,Gao Xiaorong,Luo Lin,Zhu Hongna,Zhong Yunjie. Finite Element Simulation and Experiment on Interaction of Surface Waves Excited by Laser Point or Line Source with Rail Defects[J]. Laser & Optoelectronics Progress, 2019, 56(8): 081201

隋皓,高晓蓉,罗林,朱宏娜,钟云杰. 激光点源与线源激发表面波与钢轨缺陷作用的有限元仿真和实验[J]. 激光与光电子学进展, 2019, 56(8): 081201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF