High Power Laser Science and Engineering, 2019, 7 (1): 01000e20, Published Online: Apr. 3, 2019  

Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma

Author Affiliations
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
4 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
5 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
6 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Absolute instability modes due to secondary scattering of stimulated Raman scattering (SRS) in a large nonuniform plasma are studied theoretically and numerically. The backscattered light of convective SRS can be considered as a pump light with a finite bandwidth. The different frequency components of the backscattered light can be coupled to develop absolute SRS instability near their quarter-critical densities via rescattering process. The absolute SRS mode develops a Langmuir wave with a high phase velocity of about $c/\sqrt{3}$ with $c$ the light speed in vacuum. Given that most electrons are at low velocities in the linear stage, the absolute SRS mode grows with very weak Landau damping. When the interaction evolves into the nonlinear regime, the Langmuir wave can heat abundant electrons up to a few hundred keV via the SRS rescattering. Our theoretical model is validated by particle-in-cell simulations. The absolute instabilities may play a considerable role in the experiments of inertial confinement fusion.

Yao Zhao, Zhengming Sheng, Suming Weng, Shengzhe Ji, Jianqiang Zhu. Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e20.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!