Photonics Research, 2019, 7 (4): 04000423, Published Online: Apr. 11, 2019   

Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers Download: 514次

Author Affiliations
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Institute for Advanced Interdisciplinary Research, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract
The dispersive Fourier transform (DFT) technique opens a fascinating pathway to explore ultrafast non-repetitive events and has been employed to study the build-up process of mode-locked lasers. However, the shutting process for the mode-locked fiber laser seems to be beyond the scope of researchers, and the starting dynamics under near-zero dispersion remains unclear. Here, the complete evolution dynamics (from birth to extinction) of the conventional soliton (CS), stretched pulse (SP), and dissipative soliton (DS) are investigated by using the DFT technique. CS, SP, and DS fiber lasers mode locked by single-walled carbon nanotubes (SWNTs) are implemented via engineering the intracavity dispersion map. The relaxation oscillation can always be observed before the formation of stable pulse operation due to the inherent advantage of SWNT, but it exhibits distinct evolution dynamics in the starting and shutting processes. The shutting processes are dependent on the dispersion condition and turn-off time, which is against common sense. Some critical phenomena are also observed, including transient complex spectrum broadening and frequency-shift interaction of SPs and picosecond pulses. These results will further deepen understanding of the mode-locked fiber laser from a real-time point of view and are helpful for laser design and applications.

Yudong Cui, Xueming Liu. Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers[J]. Photonics Research, 2019, 7(4): 04000423.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!