首页 > 论文 > 光子学报 > 48卷 > 4期(pp:423003--1)

检测法布里-珀罗滤波器传输时延的谐振腔方法

Resonator Method to Measure Optical-pulse-propagation Delay of Fabry-Perot Filters

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种谐振腔方案用于测量法布里-珀罗滤波器的光传输时延.将法布里-珀罗滤波器置于谐振腔中, 根据谐振腔长与谐振频率的关系, 将滤波器的传输延时量转化为谐振基频的减小量进行测量.实验测得谐振基频的变化量为0.167 MHz, 对应谐振腔长的变化量为3.570 m.除去器件的尾纤等包装长度, 滤波器的传输延时为1.542 m.该方案不依赖于镜面反射系数、精细度等滤波器参数, 可顺利测得光信号经过高精细度法布里-珀罗滤波器的传输时延, 甚至可实现很小尺寸的滤波器时延测量.通过谱分析法测量得到延时量为1.581 m, 验证了实验结果的正确性.

Abstract

A resonant method is proposed to measure the optical-pulse-propagation delay of the Fabry-Perot filter. The Fabry-Perot filter is placed in a resonant cavity, so its transmission delay is converted to the decrease of the resonant fundamental frequency, according to the relationship between the cavity length and the resonant frequency. The change in the fundamental frequency of the resonance is measured to be 0.167 MHz, which corresponds to a change in the length of the resonant cavity of 3.570 m. Subtracting the package length, the transmission delay is 1.542 m. No other parameters are needed in the scheme, such as the reflection coefficient of specular surface, the fineness and so on, it is easy to get noticeable propagation delay of high-finesse Fabry-Perot filters, even a minor-sized one. A transmission delay of 1.581 m is obtained by spectral analysis, which is a verification to the above experimental results.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN713;TN29

DOI:10.3788/gzxb20194804.0423003

基金项目:The National Natural Science Foundation of China(No. 61675182)

收稿日期:2018-12-05

修改稿日期:2019-02-01

网络出版日期:--

作者单位    点击查看

叶凌云:浙江大学 生物医学工程与仪器科学学院, 杭州 310027
麻艳娜:浙江大学 生物医学工程与仪器科学学院, 杭州 310027
王文睿:浙江大学 航空航天学院, 杭州 310027
黄添添:浙江大学 生物医学工程与仪器科学学院, 杭州 310027
宋开臣:浙江大学 生物医学工程与仪器科学学院, 杭州 310027浙江大学 航空航天学院, 杭州 310027

联系人作者:叶凌云(zjujerry@163.com)

备注:YE Ling-yun(1977-), male, associate professor. Ph.D. degree, mainly focuses on optical sensing technology.

【1】SONG Ming, XIE Fang, FENG Qi-bo. Research development on the tunable optical filters[J]. Optical Instruments, 2006, 28(5): 81-85.

【2】YU C, YING W. A novel MEMS OTF and its applications in EDFA[J]. Study on Optical Communications, 2007, 33(1): 64-66.

【3】HAMARSHEH M M N, SHALABY H M H, ABDULLAH M K. Design and analysis of a dynamic code division multiple access communication system based on tunable optical filter[J]. Journal of Lightwave Technology, 2006, 23(12): 3959-3965.

【4】FUKUCHI K, KOJIMA S, HISHIDA Y, et al. Optical water-level sensing systems using fiber Bragg grating[C]. SPIE, 2002, 4920: 54-61.

【5】LING Tao, CHEN Sung-liang, GUO L J. Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector[J].Optics Express, 2011,19(2): 861-869.

【6】ZHANG Ying, LIU Zhi-guo, GUO Zhuan-yun, et al. A high-sensitivity fiber grating pressure sensor and its pressure sensing characteristics[J]. Acta Optica Sinica, 2002, 22(1): 89-91.

【7】FREISE A, STRAIN K. Interferometer techniques for gravitational wavedetection[J]. Living Reviews in Relativity, 2010, 13(1): 1-81.

【8】HUI J, ANG L K, LIU A Q, et al. Tunable high-Q photonic bandgap Fabry-Perot resonator[J]. Journal of the Optical Society of America B, 2005, 22(8): 1770-1777.

【9】MOHAMMAD A T, BAYLOR M E, SHAI A. High quality factor polymeric Fabry-Perot resonators utilizing a polymer waveguide[J].Optics Express, 2014, 22(5): 5904-5912.

【10】SAKE J. Fabry-Perot interferometers with threemirrors[J]. Applied Optics, 1986, 25(22): 4181-4184.

【11】SUN An, QIAO Xue-guang, JIA Zhen-an, et al. Study of simultaneous measurement of temperature and pressure using double fiber Bragg gratings with polymer package[J]. Optical Engineering, 2005, 44(3): 034402.

【12】SUN An, QIAO Xue-guang, JIA Zhen-an, et al. The experimental study of large range enhanced pressure sensitivity concerning fiber Bragg grating pressure sensor[J]. Acta Photonica Sinica, 2004, 24(11): 1491-1493.

【13】ZHOU Z, ZHAO X F, WU Zhan-Jun, et al. Study on FBG sensor′s steel capillary encapsulating technique and sensing properties[J]. Chinese Journal of Lasers, 2002, 29(12): 1080-1092.

【14】RADHOUENE M, CHHIPA M K, NAJJAR M, et al. Novel design of ring resonator based temperature sensor using photonics technology[J]. Photonic Sensors, 2017,7(4): 311-316.

【15】WU Li-heng,WANG Ming-hong. Operating characteristics of photonic crystal filters based on micro resonators[J]. Laser & Optoelectronics Progress, 2018, 55(2): 254-262

【16】HAO Xiang-yu, MENG Yi-chao, LI Zhuo-yan. Design of Mach-Zehnder interferometer type optical interleaver based on half-band digital filter[J]. Acta Photonica Sinica, 2017, 46(s1): 54-60.

【17】MENG Yi-chao, HUANG Zhao-ming, WANG Lu-tang, et al. Transmission characteristics of interleaver based on Mach-Zehnder interferometer with optical all pass filter inserted[J]. Acta Optica Sinica, 2003, 23(5): 575-580.

【18】LO S S, CHEN C C. High finesse of optical filter by a set Fabry-Perot cavity[J]. Journal of the Optical Society of America B, 2007, 24(8): 1853-1856.

【19】SUN Xiao-meng, ZHOU Lin-jie, XIE Jing-ya, et al. Tunable silicon Fabry-Perot comb filters formed by Sagnac loop mirrors[J]. Optics Letters, 2013, 38(4): 567-569.

【20】HO C P, PITCHAPPA P, KROPELNICKI P. Two-dimensional photonic-crystal-based Fabry-Perot etalon[J]. Optics Letters, 2015, 40(12): 2743-2746.

【21】YU J, YUAN S, GAO J Y. Optical pulse propagation in a Fabry-Perot etalon: analytical discussion[J]. Journal of the Optical Society of America A, 2001, 18(9): 2153.

【22】SUTERM, DIETIKER P. Calculation of the finesse of an ideal Fabry-Perot resonator[J]. Apply Optics, 2014, 53(30): 7004-7010.

引用该论文

YE Ling-yun,MA Yan-na,WANG Wen-rui,HUANG Tian-tian,SONG Kai-chen. Resonator Method to Measure Optical-pulse-propagation Delay of Fabry-Perot Filters[J]. ACTA PHOTONICA SINICA, 2019, 48(4): 0423003

叶凌云,麻艳娜,王文睿,黄添添,宋开臣. 检测法布里-珀罗滤波器传输时延的谐振腔方法[J]. 光子学报, 2019, 48(4): 0423003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF