首页 > 论文 > 激光与光电子学进展 > 56卷 > 9期(pp:91005--1)

结合残差学习的尺度感知图像降噪算法

Scale-Perception Image Denoising Algorithm Based on Residual Learning

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种结合深度学习的图像降噪算法。采用尺度感知边缘保护滤波器对噪声图像进行多尺度分解,利用其尺度感知和边缘保持的特性对图像噪声等小结构信息进行移除,并保持边缘细节不变;将训练好的卷积神经网络模型用于学习图像细节信息,并用于指导被尺度感知边缘保护滤波器处理后的图像进行细节恢复。结果表明,本文降噪算法能够有效降噪,并保持较好的高频信息,融合结果更利于人类视觉观察。

Abstract

This study proposed an image denoising algorithm based on deep learning. The scale-perception edge-protection filter was used to decompose the noise image in multiple scales. Small features, such as the image noise, were removed via scale sensing and edge preserving, and the edge details were kept unchanged. A trained convolutional neural network model was used to gather detailed information about the image, and the image was then processed using the scale-perception edge-protection filter for detail recovery. The results show that the proposed denoising algorithm can effectively reduce noises and well retain high-frequency information. Moreover, the fusion results correlate well with human visual observations.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/LOP56.091005

所属栏目:图像处理

基金项目:国家自然科学基金(61403298)、陕西省自然科学基金(2015JM1024)

收稿日期:2018-11-03

修改稿日期:2018-11-27

网络出版日期:2018-12-06

作者单位    点击查看

陈欢:陕西国际商贸学院基础部, 陕西 咸阳 712046西安建筑科技大学理学院, 陕西 西安 710055
陈清江:西安建筑科技大学理学院, 陕西 西安 710055

联系人作者:陈清江(404787245@qq.com)

【1】Bijalwan A, Goyal A, Sethi N. Wavelet transform based image denoise using threshold approaches[J]. International Journal of Engineering & Advanced Technology, 2012,1(5): 218-221.

【2】Bansal M, Devi M, Jain N, et al. A proposed approach for biomedical image denoising using PCA_NLM[J]. International Journal of Bio-Science & Bio-Technology, 2014, 6(6):13-30.

【3】Liu Q, Zhang C M, Guo Q, et al. Adaptive sparse coding on PCA dictionary for image denoising[J]. The Visual Computer, 2016, 32(4): 535-549.

【4】Lian Q S, Shi B S, Chen S Z. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2): 240-260.
练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展[J]. 自动化学报, 2015, 41(2): 240-260.

【5】Yu L Q, Qin Y L, Zhang X S. Denoising of strong noisy image via gradient reweighted non-local averaging over learned dictionaries[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111002.
余临倩, 覃亚丽, 张晓帅. 基于字典学习的梯度重权非局部平均的强噪声图像去噪[J]. 激光与光电子学进展, 2016, 53(11): 111002.

【6】Gu S H, Zhang L, Zuo W M, et al. Weighted nuclear norm minimization with application to image denoising[C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 2014: 2862-2869.

【7】Maggioni M, Katkovnik V, Egiazarian K, et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J]. IEEE Transactions on Image Processing, 2013, 22(1): 119-133.

【8】Toh K K V, Isa N A M. Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction[J]. IEEE Signal Processing Letters, 2010, 17(3): 281-284.

【9】Wei N, Yang Y Q, Dong F M. Cross dual-domain filter for denoising multi-mode images[J]. Journal of Image and Graphics, 2016, 21(6): 691-697.
魏宁, 杨元琴, 董方敏. 多模图像交叉双域滤波算法[J]. 中国图象图形学报, 2016, 21(6): 691-697.

【10】Parekh A, Selesnick I W. Convex denoising using non-convex tight frame regularization[J]. IEEE Signal Processing Letters, 2015, 22(10): 1786-1790.

【11】Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration[C]∥International Conference on Computer Vision, November 6-13, 2011, Barcelona, Spain. New York: IEEE, 2011: 479-486.

【12】Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.

【13】Jiao L J, Wang W J. Speeded-up K-SVD image denoising algorithm[J]. Journal of Chinese Computer Systems, 2016, 37(7): 1608-1612.
焦莉娟, 王文剑. 一种快速的K-SVD图像去噪方法[J]. 小型微型计算机系统, 2016, 37(7): 1608-1612.

【14】Xu S P, Zhang X Q, Jiang Y N, et al. Noise level estimation based on local means and its application to the blind BM3D denoising algorithm[J]. Journal of Image and Graphics, 2017, 22(4): 422-434.
徐少平, 张兴强, 姜尹楠, 等. 局部均值噪声估计的盲3维滤波降噪算法[J]. 中国图象图形学报, 2017, 22(4): 422-434.

【15】Chen Q J, Li Y, Chai Y Z. A multi-focus image fusion algorithm based on depth learning[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071015.
陈清江, 李毅, 柴昱洲. 一种基于深度学习的多聚焦图像融合算法[J]. 激光与光电子学进展, 2018, 55(7): 071015.

【16】Li S M, Lei G Q, Fan R. Depth map super-resolution reconstruction based on convolutional neural networks[J]. Acta Optica Sinica, 2017, 37(12): 1210002.
李素梅, 雷国庆, 范如. 基于卷积神经网络的深度图超分辨率重建[J]. 光学学报, 2017, 37(12): 1210002.

【17】Zhang Q, Shen X, Xu L, et al. Rolling guidance filter[J]. European Conference on Computer Vision (ECCV) (Oral Presentation), 2014, 8691: 815-830.

引用该论文

Chen Huan,Chen Qingjiang. Scale-Perception Image Denoising Algorithm Based on Residual Learning[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091005

陈欢,陈清江. 结合残差学习的尺度感知图像降噪算法[J]. 激光与光电子学进展, 2019, 56(9): 091005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF