首页 > 论文 > 激光与光电子学进展 > 56卷 > 9期(pp:91006--1)

基于局部二进制模式方差的分数阶微分医学图像增强算法

Enhancement Algorithm of Fractional Differential Medical Images Based on Local Binary Pattern Variance

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了分数阶微分及其掩模算子的特性,提出了一种新的基于局部二进制模式方差(LBPV)的分数阶微分的图像增强算法,运用LBPV理论对图像进行了特征提取,构建了更加有效的分数阶掩模模板。实验结果表明,与现有的分数阶微分图像增强算法相比,所提算法在增强图像的纹理和细节信息上具有良好的效果。

Abstract

The characteristics of fractional differential and its mask operator are investigated, and a new enhancement algorithm of fractional differential images is proposed based on local binary pattern variance (LBPV). The LBPV theory is used for the feature extraction of images. A more effective fractional mask template is constructed. The experimental results show that compared with the existing enhancement algorithms of fractional differential images, the proposed algorithm performs better in the textures and details of enhanced images.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/LOP56.091006

所属栏目:图像处理

基金项目:天津市自然科学基金(16JCYBJC15600)

收稿日期:2018-11-07

修改稿日期:2018-11-29

网络出版日期:2018-12-06

作者单位    点击查看

刘洪普:河北工业大学人工智能与数据科学学院, 天津 300401河北工业大学电气工程学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
郑梦敬:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
侯向丹:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
李柏岑:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
杜佳卓:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401

联系人作者:侯向丹(hxd@scse.hebut.edu.cn)

【1】Michailovich O V, Tannenbaum A. Despeckling of medical ultrasound images[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(1): 64-78.

【2】Yang Q, Chen D L, Zhao T B, et al. Fractional calculus in image processing: a review[J]. Fractional Calculus and Applied Analysis, 2016, 19(5): 1222-1249

【3】Zhang W, Li J J, Yang Y P. Spatial fractional telegraph equation for image structure preserving denoising[J]. Signal Processing, 2015, 107: 368-377.

【4】Tian D, Xue D Y, Wang D H. A fractional-order adaptive regularization primal-dual algorithm for image denoising[J]. Information Sciences, 2015, 296: 147-159.

【5】Yang Z Z, Zhou J L, Lang F N. Noise detection and image de-noising based on fractional calculus[J]. Journal of Image and Graphics, 2014, 19(10): 1418-1429.
杨柱中, 周激流, 郎方年. 基于分数阶微积分的噪声检测和图像去噪[J]. 中国图象图形学报, 2014, 19(10): 1418-1429.

【6】He N, Wang J B, Zhang L L, et al. An improved fractional-order differentiation model for image denoising[J]. Signal Processing, 2015, 112: 180-188.

【7】Zhang X, Wang W X, Zhang Y F, et al. Vague aerial image enhancement on fractional differential and improved Retinex[J]. Application Research of Computers, 2015, 32(9): 2844-2848.
张鑫, 王卫星, 张元方, 等. 基于分数阶微分及改进 Retinex的模糊航空图像增强[J]. 计算机应用研究, 2015, 32(9): 2844-2848.

【8】Pu Y F, Zhou J L, Yuan X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement[J].IEEE Transactions on Image Processing, 2010, 19(2): 491-511.

【9】Zhang S Y, Xie Y Y, Zhang X, et al. Enhancement of fuzzy traffic video images based on fractional differential[J]. Optics and Precision Engineering, 2014, 22(3): 779-786.
张绍阳, 解源源, 张鑫, 等. 基于分数阶微分的模糊交通视频图像增强[J]. 光学 精密工程, 2014, 22(3): 779-786.

【10】Ren Z M, He C J, Zhang Q F. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 2013, 93(9): 2408-2421.

【11】Zachevsky I, Zeevi Y Y. Single-image superresolution of natural stochastic textures based on fractional Brownian motion[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2096-2108.

【12】Wang L, Zhou S, Karim A. Image zooming technique based on the split Bregman iteration with fractional order variation regularization[J]. International Arab Journal of Information Technology, 2016, 13(6): 944-950.

【13】Milanfar P. Atour of modern image filtering: new insights and methods, both practical and theoretical[J]. IEEE Signal Processing Magazine, 2013, 30(1): 106-128.

【14】Pu Y F, Zhou J L, Siarry P, et al. Fractional partial differential equation: fractional total variation and fractional steepest descent approach-based multiscale denoising model for texture image[J]. Abstract and Applied Analysis, 2013, 2013: 1-19.

【15】Pu Y F. Application of fractional differential approach to digital image processing[J]. Journal of Sichuan University(Engineering Science Edition), 2007, 39(3): 124-132.
蒲亦非. 将分数阶微分演算引入数字图像处理[J]. 四川大学学报(工程科学版), 2007, 39(3): 124-132.

【16】Pu Y F, Wang W X. Fractional differential masks of digital image and their numerical implementation algorithms[J]. Acta Automatica Sinica, 2007, 33(11): 1128-1135.
蒲亦非, 王卫星. 数字图像的分数阶微分掩模及其数值运算规则[J]. 自动化学报, 2007, 33(11): 1128-1135.

【17】Huang G, Xu L, Pu Y F. Summary of research on image processing using fractional calculus[J]. Application Research of Computers, 2012, 29(2): 414-420, 426.
黄果, 许黎, 蒲亦非. 分数阶微积分在图像处理中的研究综述[J]. 计算机应用研究, 2012, 29(2): 414-420,426.

【18】Huang G, Chen Q L, Xu L, et al. Realization of adaptive image enhancement with variable fractional order differential[J]. Journal of Shenyang University of Technology, 2012, 34(4): 446-454.
黄果, 陈庆利, 许黎, 等. 可变阶次分数阶微分实现图像自适应增强[J]. 沈阳工业大学学报, 2012, 34(4): 446-454.

【19】Wang C L, Qiao H S, Chen J J. Adaptive fractional differential algorithm based on texture complexity[J]. Computer Engineering, 2012, 38(7): 177-178,181.
汪成亮, 乔鹤松, 陈娟娟. 基于纹理复杂度的自适应分数阶微分算法[J]. 计算机工程, 2012, 38(7): 177-178,181.

【20】Wang C L, Lan L B, Zhou S B. Adaptivefractional differential and its application to image texture enhancement[J]. Journal of Chongqing University(Natural Science Edition), 2011, 34(2): 32-37.
汪成亮, 兰利彬, 周尚波. 自适应分数阶微分在图像纹理增强中的应用[J]. 重庆大学学报, 2011, 34(2): 32-37.

【21】Li J C. Image enhancement algorithm based on 1~2 order fractional differential[J]. Computer Engineering, 2015, 41(2): 209-214.
李军成. 基于1~2阶分数阶微分的图像增强算法[J]. 计算机工程, 2015, 41(2): 209-214.

【22】Jiang W, Li X L, Yang Y Q, et al. New image denoising method based on rational-order differential[J]. Journal of Computer Applications, 2014, 34(3): 801-805.
蒋伟, 李小龙, 杨永琴, 等. 基于有理数阶微分的图像去噪新方法[J]. 计算机应用, 2014, 34(3): 801-805.

【23】Jiang W, Li X L, Liu Y W. Image enhancement new model based on rational-order partial differential[J]. Journal of Sichuan University(Natural Science Edition), 2016, 53(1): 47-53.
蒋伟, 李小龙, 刘亚威. 基于有理数阶偏微分的图像增强新模型[J]. 四川大学学报(自然科学版), 2016, 53(1): 47-53.

【24】Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

【25】Guo Z H, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance (LBPV) with global matching[J]. Pattern Recognition, 2010, 43(3): 706-719.

【26】Liu Y, Li Q W, Huo G Y,et al. Local binary description combined with superpixel segmentation refinement for stereo matching[J]. Acta Optica Sinica, 2018, 38(6): 0615003.
刘艳, 李庆武, 霍冠英, 等. 结合局部二进制表示和超像素分割求精的立体匹配[J]. 光学学报, 2018, 38(6): 0615003.

【27】Wang C J, Sun T, Wang R, et al. Color image registration based on colored binary local invariant descriptor[J]. Chinese Journal of Lasers, 2015, 42(1): 0109001.
王灿进, 孙涛, 王锐, 等. 基于彩色二进制局部不变特征的图像配准[J]. 中国激光, 2015, 42(1): 0109001.

【28】Li C F, Chen X H. Vehicle type recognition based on combining local binary pattern and Hu matrix feature[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101503.
李澄非, 陈新华. 融合局部二值模式和Hu矩特征的车型识别[J]. 激光与光电子学进展, 2016, 53(10): 101503.

引用该论文

Liu Hongpu,Zheng Mengjing,Hou Xiangdan,Li Bocen,Du Jiazhuo. Enhancement Algorithm of Fractional Differential Medical Images Based on Local Binary Pattern Variance[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091006

刘洪普,郑梦敬,侯向丹,李柏岑,杜佳卓. 基于局部二进制模式方差的分数阶微分医学图像增强算法[J]. 激光与光电子学进展, 2019, 56(9): 091006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF