首页 > 论文 > 激光与光电子学进展 > 56卷 > 9期(pp:91404--1)

选择性激光烧结与凝胶注模成型制备高强度低导热系数石墨/陶瓷复合材料

Fabrication of High Strength and Low Thermal Conductivity Graphite/Ceramic Composites by Selective Laser Sintering and Gelcasting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用凝胶注模成型工艺将采用选择性激光烧结技术制备的多孔石墨预制体与含莫来石的陶瓷浆料进行复合,经冻干和烧结后得到了石墨/莫来石复合材料;测试分析了各试样的性能,确定了莫来石陶瓷相的合理烧结工艺。结果表明,多孔石墨预制体的开气孔率为60%,密度为0.518 g·cm-3,导热系数约为1.01 W·m-1·K-1,抗弯强度为1.7 MPa。烧结后莫来石的最大相对密度为80.4%,抗压强度为28.3 MPa,抗弯强度为27.5 MPa,导热系数为2.35 W·m-1·K-1。多孔石墨预制体的后处理可避免复合区域出现裂纹及两相结合不佳的现象,大幅增强了复合材料的整体性与界面结合性。

Abstract

By the gelcasting process, the porous graphite preform prepared by selective laser sintering is mixed with mullite ceramic slurry, and after freeze drying and sintering, the graphite/mullite composite is obtained. The performance of each sample is tested and analyzed, and the suitable sintering process is determined. The results show that the open porosity, density, thermal conductivity, and bending strength of the porous graphite preform are 60%, 0.518 g/cm3, 1.01 W·m-1·K-1 and 1.7 MPa, respectively. For the sintered mullite ceramics, the relative density is 80.4%, the compressive strength is 28.3 MPa, the bending strength is 27.5 MPa, and the thermal conductivity is 2.35 W·m-1·K-1. The post-processing of porous graphite preforms can avoid the occurrence of cracks in the combination zone and the poor combination of two phases, and the integrity and interfacial bonding of composites are greatly enhanced.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TF124

DOI:10.3788/lop56.091404

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51575313)

收稿日期:2018-11-11

修改稿日期:2018-11-22

网络出版日期:2018-12-06

作者单位    点击查看

吴海华:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
孙瑜:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
陈奎:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
李亚峰:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002

联系人作者:吴海华(wuhaihua@ctgu.edu.cn)

【1】Kumar S, Kruth J P. Composites by rapid prototyping technology[J]. Materials & Design, 2010, 31(2): 850-856.

【2】Huang S H, Liu P,Mokasdar A, et al. Additive manufacturing and its societal impact: a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5/6/7/8): 1191-1203.

【3】Pham D T, Gault R S. A comparison of rapid prototyping technologies[J]. International Journal of Machine Tools and Manufacture, 1998, 38(10/11): 1257-1287.

【4】Kruth J P, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals, 2007, 56(2): 730-759.

【5】Shahzad K, Deckers J, Kruth J P, et al. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing[J]. Journal of Materials Processing Technology, 2013, 213(9): 1484-1494.

【6】Maeda K, Childs T H C. Laser sintering (SLS) of hard metal powders for abrasion resistant coatings[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3): 609-615.

【7】Wang Q, Han X H, Sommers A, et al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks[J]. International Journal of Refrigeration, 2012, 35(1): 7-26.

【8】Huang J F, Zeng X R, Li H J, et al. Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites[J]. Carbon, 2004, 42(8/9): 1517-1521.

【9】Wu H H, Xiao L N, Wang J, et al. Preparation and performance of conductive composites embedded in honeycomb-like graphite skeletons[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011417.
吴海华, 肖林楠, 王俊, 等. 内嵌类蜂窝石墨骨架导电复合材料的制备与性能[J]. 激光与光电子学进展, 2018, 55(1): 011417.

【10】Wu H H, Yan J N, Li T F, et al. Experimental study on molding precision for graphite/phenolic resin mixed powders processed by selective laser sintering[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081405.
吴海华, 鄢俊能, 李腾飞, 等. 石墨/酚醛树脂混合粉末选择性激光烧结成型精度实验研究[J]. 激光与光电子学进展, 2017, 54(8): 081405.

【11】Wu H H, Li T F, Xiao L N, et al. Research on forming process of flake graphite powder by selective laser sintering[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101409.
吴海华, 李腾飞, 肖林楠, 等. 鳞片石墨粉末选择性激光烧结成型工艺研究[J]. 激光与光电子学进展, 2016, 53(10): 101409.

【12】Montanaro L, Perrot C, Esnouf C, et al. Sintering of industrial mullites in the presence of magnesia as a sintering aid[J]. Journal of the American Ceramic Society, 2008, 83(1): 189-196.

【13】Souto P M, Menezes R R, Kiminami R H G A. Sintering of commercial mulite powder: effect of MgO dopant[J]. Journal of Materials Processing Technology, 2009, 209(1): 548-553.

【14】Manocha L M, Bhatt H, Manocha S M. Development of carbon/carbon composites by co-carbonization of phenolic resin and oxidised pan fibers[J]. Carbon, 1996, 34(7): 841-849.

【15】Tzeng S S, Chr Y G. Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis[J]. Materials Chemistry and Physics, 2002, 73(2/3): 162-169.

【16】Jia G Y, Deng Y X. Investigation on the gelation process of silica sol[J]. Bulletin of the Chinese Ceramic Society, 2004, 23(6): 91-93.
贾光耀, 邓育新. 硅溶胶凝胶化过程的研究[J]. 硅酸盐通报, 2004, 23(6): 91-93.

引用该论文

Wu Haihua,Sun Yu,Chen Kui,Li Yafeng. Fabrication of High Strength and Low Thermal Conductivity Graphite/Ceramic Composites by Selective Laser Sintering and Gelcasting[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091404

吴海华,孙瑜,陈奎,李亚峰. 选择性激光烧结与凝胶注模成型制备高强度低导热系数石墨/陶瓷复合材料[J]. 激光与光电子学进展, 2019, 56(9): 091404

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF