首页 > 论文 > 光电工程 > 46卷 > 4期(pp:180418--1)

透火焰红外数字全息图像的 分辨率增强算法

Resolution enhancement algorithm based on infrared digital holography imaging through flame

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来, 高温干扰遮蔽情况下利用红外热成像与数字全息成像相结合的新技术观察火场中目标成为时下的研究重点。理论上火焰和浓烟对长波长的红外数字全息成像没有影响, 但在现实火场环境中, 燃烧物的大颗粒灰尘将会干扰光路, 严重增加了全息图重建图像的噪声。本文提出了一种新的图像处理算法来抑制红外数字全息重建的噪声。该算法利用双边滤波器配合拉普拉斯金字塔算法将全息重建图像的细节和能量层分开, 再对细节层进行滤波, 然后用反向拉普拉斯金字塔算法将分离的层叠加回重建图像中, 从而提高重建像的分辨率, 并通过模拟火场环境验证了该算法对改善红外数字全息图重建像的分辨率具有显著效果。

Abstract

In recent years, the use of new technologies combining infrared thermal imaging and digital holographic imaging to observe the targets in the fire field has become a current research focus. In theory, flame and smoke have no effect on long-wavelength infrared digital holography, but in the real fire environment, large particles of dust from the combustion will interfere with the light path, seriously increasing the reconstruction noise of the hologram. This paper proposes a new image processing algorithm to suppress the noise of infrared digital holographic reconstruc-tion. The algorithm uses a bilateral filter combined with the Laplacian pyramid algorithm to separate the details and energy layers of the holographic reconstructed image, filters the detail layer, and then superimposes the separated layers back into the reconstructed image by the inverse Laplacian pyramid algorithm. Therefore, the resolution of the reconstructed image is improved, and the simulation of the fire field environment proves that the algorithm has a significant effect on improving the resolution of the reconstructed image of the infrared digital hologram.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391;TB872

DOI:10.12086/oee.2019.180418

所属栏目:科研论文

基金项目:国家重点研发计划 (2016YFB0700501); 宁波国家高新区 (新材料科技城 )重大科技专项 (重大技术创新项目 ); 江苏省研究生科研与实践创新计划项目 (SJCX17_0233)

收稿日期:2018-08-01

修改稿日期:2018-12-08

网络出版日期:--

作者单位    点击查看

柴金燕:宁波大学信息科学与工程学院, 浙江宁波 315211
黄晁:宁波中国科学院信息技术应用研究院, 浙江宁波 315100宁波中科集成电路设计中心有限公司, 浙江宁波 315100
陈春燕:宁波大学信息科学与工程学院, 浙江宁波 315211
杨超:南京邮电大学电子与光学工程学院, 江苏南京 210046

联系人作者:柴金燕(892165299@qq.com)

备注:柴金燕(1993-), 女, 硕士研究生, 主要从事图像处理及嵌入式系统开发的研究。

【1】Li W L. Research on digital holographic autofocus and image quality enhancement technology[D]. Nanjing: Nanjing Univer-sity of Posts and Telecommunication, 2016.李维亮 . 数字全息自动聚焦及像质增强技术研究 [D]. 南京: 南京邮电大学, 2016.

【2】Paturzo M, Memmolo P, Finizio A, et al. Synthesis and display of dynamic holographic 3D scenes with real-world objects[J]. Optics Express, 2010, 18(9): 8806–8815.

【3】Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating[J]. Optics Express, 2008, 16(21): 17107–17118.

【4】Locatelli M, Pugliese E, Paturzo M, et al. Imaging live humans through smoke and flames using far-infrared digital hologra-phy[J]. Optics Express, 2013, 21(5): 5379–5390.

【5】Amako J, Miura H, Sonehara T. Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light mod-ulator[J]. Applied Optics, 1995, 34(17): 3165–3171.

【6】Pan F, Yang L, Xiao W. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms rec-orded with a multimode laser[J]. Optics Express, 2017, 25(18): 21815–21825.

【7】Rong L, Xiao W, Pan F, et al. Speckle noise reduction in digital holography by use of multiple polarization holograms[J]. Chi-nese Optics Letters, 2010, 8(7): 653–655.

【8】Wang L L, Tschudi T, Halldorsson T, et al. Speckle reduction in laser projection systems by diffractive optical elements[J]. Ap-plied Optics, 1998, 37(10): 1770–1775.

【9】Lai XJ, Tu H Y, Wu C H, et al. Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy[J]. Applied Optics, 2015, 54(1): A51–A58.

【10】Kujawinska M, Makowski P, Finke G, et al. Synthetic aperture double exposure digital holographic interferometry for wide an-gle measurement and monitoring of mechanical displace-ments[J]. Proceedings of SPIE, 2015, 9660: 966019.

【11】Huang H C, Rong L, Wang D Y, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhance-ment[J]. Applied Optics, 2016, 55(3): A43–A48.

【12】Mori Y, Nomura T. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display[J]. Applied Optics, 2013, 52(16): 3838–3844.

【13】Zhang W L, Tian F C, Zhao Z Z, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engi-neering, 2017, 44(5): 488.497.张文理, 田逢春, 赵贞贞, 等. 空间外差光谱仪的干涉图校正 [J].光电工程, 2017, 44(5): 488.497.

【14】Chen H, Wang Y J. Research on image fusion algorithm based on Laplacian pyramid transform[J]. Laser & Infrared, 2009, 39(4): 439–442.陈浩, 王延杰. 基于拉普拉斯金字塔变换的图像融合算法研究 [J].激光与红外, 2009, 39(4): 439–442.

【15】Huang Y Q, Zhao K, Pei C, et al. Computational holographic reference light angle selection method based on spatial spec-trum analysis of primitive hologram[J]. Acta Photonica Sinica, 2015, 44(02): 23–27.黄应清, 赵锴, 裴闯, 等. 基于基元全息图空间频谱分析的计算全息参考光角度选择方法[J].光子学报, 2015, 44(02): 23–27.

【16】Wang S P, Gao T. Destriping method for infrared image based on Bilateral filter[J]. Infrared Technology, 2014, 36(9): 728–731.王书朋, 高腾. 基于双边滤波器的红外图像条纹噪声消除算法 [J].红外技术, 2014, 36(9): 728–731.

【17】Xiao L, He K, Zhou J L, et al. Image noise removal on im-provement adaptive medium filter[J]. Laser Journal, 2009, 30(2): 44–46.肖蕾, 何坤, 周激流, 等. 改进自适应中值滤波的图像去噪[J].激光杂志, 2009, 30(2): 44–46.

【18】Zhang Q, Zhou P C, Xue M G, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineer-ing, 2017, 44(9): 888.894.张谦, 周浦城, 薛模根, 等. 一种结合 IGM和改进 PCNN的图像增强方法[J].光电工程, 2017, 44(9): 888.894.

【19】Jiang M. Edge enhancement and noise suppression for infrared image based on feature analysis[J]. Infrared Physics & Tech-nology, 2018, 91: 142–152.

引用该论文

Chai Jinyan,Huang Chao,Cheng Chunyan,Yang Chao. Resolution enhancement algorithm based on infrared digital holography imaging through flame[J]. Opto-Electronic Engineering, 2019, 46(4): 180418

柴金燕,黄晁,陈春燕,杨超. 透火焰红外数字全息图像的 分辨率增强算法[J]. 光电工程, 2019, 46(4): 180418

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF