面向小型机器人的超大视场红外立体视觉可行性分析
Analysis on Feasibility of Infrared Ultrawide FOV Binocular Vision for Small Robots
摘要
小型机器人传统视觉方法对环境适应性差。提出了一种基于双目超大视场红外相机的环境感知方法。利用大视场镜头高阶奇次多项式模型, 建立了超大视场红外双目立体成像的水平和垂直视差数字模型。以视差模型为基础建立超大视场红外双目视觉模型, 研究了超大视场红外双目系统立体视觉范围和阈值。搭建了视场为170°×128°的超大视场红外立体视觉系统, 分析了立体视觉范围及阈值应用于小型机器人视觉的可行性。同时, 针对照度不均、雾霾等条件下的场景开展超大视场红外双目立体视觉实验研究, 构建了双目图像标准视差图, 结果表明, 超大视场红外双目立体视觉系统对复杂场景具有良好的适应性, 基本能够满足小型机器人视觉系统需求。
Abstract
To overcome such defects as poor environmental adaptability of traditional machine vision, a kind of environmental perception method based on binocular infrared ultrawide field of view (FOV) camera was proposed. Horizontal and vertical models for ultrawide FOV binocular infrared imaging were established by using high order polynomial model. Stereo vision range and threshold were researched on the basis of parallax model. Infrared ultrawide FOV binocular stereo vision system with the vision field of 170°×128° was established. Stereo vision experiments were carried out under different conditions, such as uneven illumination, smog, etc. Subjective and objective evaluation shows that infrared ultrawide FOV binocular stereo vision system has good applicability to complex scenes and is able to realize 3D depth perception of the infrared ultrawide FOV, which basically meets the requirements of small robot vision system.
中图分类号:TP394.1
DOI:10.16818/j.issn1001-5868.2019.02.025
所属栏目:光电技术及应用
基金项目:国家自然科学基金项目(61801507)
收稿日期:2018-11-21
修改稿日期:--
网络出版日期:--
作者单位 点击查看
刘秉琦:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
黄富瑜:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
联系人作者:陈一超(opticscyc@163.com)
备注:陈一超(1991-), 男, 博士研究生, 主要从事光电对抗和光电检测方面的研究。
【1】刘 斌. 四足机器人落地过程中缓冲策略的研究[D]. 济南: 山东大学, 2017.
Liu Bin. Study on buffering strategy in landing process of a quadruped robot[D]. Jinan: Shandong University, 2017.
【2】Ramón González, Alejandro López, Iagnemma K. Thermal vision, moisture content and vegetation in the context of offroad mobile robots[J]. J. of Terramechanics, 2017, 70: 3548.
【3】Min Q, Huang Y. Motion detection using binocular image flow in dynamic scenes[J]. Eurasip J. on Advances in Signal Proc., 2016(1): 49.
【4】王 科. 城市交通中智能车辆环境感知方法研究[D]. 长沙: 湖南大学, 2013.
Wang Ke. Environment perception menthod of intelligent vehicle in urban traffic[D]. Changsha: Hunan University, 2013.
【5】宋 涛, 熊文莉, 侯培国, 等. 基于极曲线几何和支持邻域的鱼眼图像立体匹配[J]. 光学精密工程, 2016, 24(8): 20502058.
Song Tao, Xiong Wenli, Hou Peiguo, et al. Stereo matching for fisheye images based on epipolar geometry and support neighborhood[J]. Optics and Precision Engin., 2016, 24(8): 20502058.
【6】王永仲. 鱼眼镜头光学[M]. 北京: 科学出版社, 2006: 3440.
Wang Yongzhong. Fish Eye Lens Optics[M]. Beijing: Science Press, 2006: 3440.
【7】李海滨, 褚光宇, 张 强, 等. 基于优化的角眼镜头成像模型的空间点定位[J]. 光学学报, 2015, 35(7): 247253.
Li Haibin, Chu Guangyu, Zhang Qiang, et al. Space point positioning based on optimization of fisheye lens imaging model[J], Acta Optica Sinica, 2015, 35(7): 247253.
【8】Kannala J, Brandt S S. A generic camera model and calibration method for conventional, wideangle and fisheye lenses[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(8): 13351340.
【9】汪同浩, 刘秉琦, 陈一超, 等. 平行式双目立体系统基线长度的选取[J]. 半导体光电, 2017, 38(4): 614617.
Wang Tonghao, Liu Bingqi, Chen Yichao, et al. Selection of baseline length for parallel binocular stereo system[J]. Semiconductor Optoelectronics, 2017, 38(4): 614617.
【10】Scaramuzza D. A flexible technique for accurate omnidirectional camera calibration and structure from motion[J]. IEEE Computer Vision Systems, 2006: 4552.
【11】张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008: 384385.
Zhang Yimo. Applied Optics[M]. Beijing: Publishing House of Electronics Industry, 2008: 384385.
【12】Kim Deukhyeon, Choi Jinwook, Yoo Hunjae, et al. Rear obstacle detection system with fisheye stereo camera using HCT[J]. Expert Systems with Applications, 2015, 42(17): 62956305.
【13】Zhai Zhiqiang, Zhu Zhongxiang, Du Yuefeng, et al. Multicroprow detection algorithm based on binocular vision[J]. Biosystems Engin., 2016, 150(1): 89103.
引用该论文
CHEN Yichao,LIU Bingqi,HUANG Fuyu. Analysis on Feasibility of Infrared Ultrawide FOV Binocular Vision for Small Robots[J]. Semiconductor Optoelectronics, 2019, 40(2): 266-270
陈一超,刘秉琦,黄富瑜. 面向小型机器人的超大视场红外立体视觉可行性分析[J]. 半导体光电, 2019, 40(2): 266-270