首页 > 论文 > 光学学报 > 39卷 > 5期(pp:515002--1)

基于通道可靠性的多尺度背景感知相关滤波跟踪算法

Multi-Scale Context-Aware Correlation Filter Tracking Algorithm Based on Channel Reliability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现实场景中跟踪目标的光照变化、尺度变化、遮挡等问题, 提出了一种基于通道可靠性的多尺度背景感知相关滤波跟踪算法。通过提取方向梯度直方图特征、灰度特征和颜色属性特征作为目标表观模型, 提高了目标跟踪方法在复杂场景中的稳健性; 独立训练每个通道的背景感知相关滤波器, 采用通道可靠性系数衡量每个通道响应图的置信度; 根据所有通道的响应图和可靠性系数, 合成多通道背景感知相关滤波跟踪器的最终响应图, 对目标进行精确定位; 运用尺度池方法估计目标的最优位置和尺度。实验结果表明:与现有跟踪算法相比, 所提算法可以有效地处理光照变化、尺度变化、遮挡等复杂因素的干扰, 取得较高的跟踪精度和成功率, 其整体性能优于其他算法。

Abstract

To solve the problems of illumination variation, occlusion, and scale variation during object tracking, we propose a multi-scale context-aware correlation filter tracking algorithm based on channel reliability. First, we extract the histogram of the oriented gradient (HOG), gray features, and color name (CN) features as the appearance model of the object, which can enhance the robustness of the tracking algorithm in a complex scene. Second, the single-channel context-aware correlation tracker is independently trained by applying the related channel feature samples. The channel reliability factor is applied to evaluate the confidence of each channel. Then, the final response map of the multi-channel context-aware correlation tracker comprises the response maps and the channel reliability values of all the channels, and it is used to accurately locate the object. Finally, the scale pool method is applied to estimate the optimal position and scale of the object. When compared with the results obtained using the state-of-art trackers, the experimental results show that the proposed algorithm can effectively tackle the illumination variation, occlusion, scale variation, and other complicated factors, and achieve relatively high tracking accuracy and success rate. The overall performance of the proposed algorithm is superior to those of other algorithms.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.41

DOI:10.3788/aos201939.0515002

所属栏目:机器视觉

基金项目:国家自然科学基金(61473153)、航空科学基金(2016ZC59006)、江苏省产学研联合创新资金-前瞻性联合研究项目(BY2016004-04)

收稿日期:2019-01-05

修改稿日期:2019-01-15

网络出版日期:2019-01-22

作者单位    点击查看

尹明锋:南京理工大学自动化学院, 江苏 南京 210094
薄煜明:南京理工大学自动化学院, 江苏 南京 210094
朱建良:南京理工大学自动化学院, 江苏 南京 210094
吴盘龙:南京理工大学自动化学院, 江苏 南京 210094

联系人作者:尹明锋(yinmingfengnjust@gmail.com)

【1】Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(2): 1-45.

【2】Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.

【3】Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.

【4】Zhang W, Kang B S. Recent advances in correlation filter-based object tracking: a review[J]. Journal of Image and Graphics, 2017, 22(8): 1017-1033.
张微, 康宝生. 相关滤波目标跟踪进展综述[J]. 中国图象图形学报, 2017, 22(8): 1017-1033.

【5】Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition, 13-18 June 2010, San Francisco, CA, USA, 2010: 2544-2550.

【6】Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of European Conference on Computer Vision, 7-13 October, Florence, Italy. 2012: 702-715.

【7】Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 23-28 June 2014, Columbus, OH, USA. 2014: 1090-1097.

【8】Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

【9】Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of IEEE International Conference on Computer Vision, 22-29 Oct. 2017, Venice, Italy. 2017:1135-1143.

【10】Lukeic A, Vojír T, Zajc L C, et al. Discriminative correlation filter with channel and spatial reliability[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 21-26 July 2017, Honolulu, HI, USA. 2017: 4847-4856.

【11】Li C, Lu C Y, Zhao X, et al. Scale adaptive correlation filter tracking algorithm based on feature fusion[J]. Acta Optica Sinica, 2018, 38(5): 0515001.
李聪, 鹿存跃, 赵珣, 等. 特征融合的尺度自适应相关滤波跟踪算法[J]. 光学学报, 2018, 38(5): 0515001.

【12】Wang Y C, Huang H, Li S M, et al. Correlation filter tracking based on online detection and scale-adaption[J]. Acta Optica Sinica, 2018, 38(2): 0215002.
王艳川, 黄海, 李邵梅, 等. 基于在线检测和尺度自适应的相关滤波跟踪[J]. 光学学报, 2018, 38(2): 0215002.

【13】Liao X F, Hou Z Q, Yu W S, et al. A scale adapted tracking algorithm based on kernelized correlation[J]. Acta Optica Sinica, 2018, 38(7): 0715002.
廖秀峰, 侯志强, 余旺盛, 等. 基于核相关的尺度自适应视觉跟踪[J]. 光学学报, 2018, 38(7): 0715002.

【14】Ma C, Huang J B, Yang X K, et al. Hierarchical convolutional features for visual tracking[C]//2015 IEEE International Conference on Computer Vision, 7-13 Dec. 2015, Santiago, Chile. 2015: 3074-3082.

【15】Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proceedings of European Conference on Computer Vision, 6-12 Sep. 2014, Zurich, Switzerland. 2014: 254-265.

【16】Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 27-30 June 2016, Las Vegas, NV, USA. 2016: 1 401-1409.

【17】Galoogahi H K, Sim T, Lucey S. Correlation filters with limited boundaries[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 7-12 June 2015, Boston, MA, USA. 2015: 4630-4638.

【18】Danelljan M, Hger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of IEEE International Conference on Computer Vision, 7-13 Dec. 2015, Santiago, Chile. 2015: 4310-4318.

【19】Mueller M, Smith N, Ghanem B. Context-aware correlation filter tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 21-26 July 2017, Honolulu, HI, USA. 2017: 1387-1395.

【20】Lukei A, Vojí T, Cehovin Zajc L, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126(7): 671-688.

【21】Bibi A, Ghanem B. Multi-templatescale-adaptive kernelized correlation filters[C]//Proceedings of IEEE International Conference on Computer Vision Workshop, 7-13 Dec. 2015, Santiago, Chile. 2015: 613-620.

【22】Li Y, Zhu J K, Hoi S C H. Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 7-12 June 2015, Boston, MA, USA. 2015: 353-361.

引用该论文

Yin Mingfeng,Bo Yuming,Zhu Jianliang,Wu Panlong. Multi-Scale Context-Aware Correlation Filter Tracking Algorithm Based on Channel Reliability[J]. Acta Optica Sinica, 2019, 39(5): 0515002

尹明锋,薄煜明,朱建良,吴盘龙. 基于通道可靠性的多尺度背景感知相关滤波跟踪算法[J]. 光学学报, 2019, 39(5): 0515002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF