首页 > 论文 > Photonics Research > 7卷 > 5期(pp:518-525)

Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this work, a model based on the optical rectification effect and the photocurrent surge effect is proposed to describe the terahertz emission mechanism of the layered GaTe crystal. As a centrosymmetric crystal, the optical rectification effect arises from the breaking of the inversion symmetry due to lattice reorganization of the crystal’s surface layer. In addition, the photocurrent surge originating from the unidirectional charge carrier diffusion—due to the noncubic mobility anisotropy within the layers—produces terahertz radiation. This is confirmed by both terahertz emission spectroscopy and electric property characterization. The current surge perpendicular to the layers also makes an important contribution to the terahertz radiation, which is consistent with its incident angle dependence. Based on our results, we infer that the contribution of optical rectification changes from 90% under normal incidence to 23% under a 40° incidence angle. The results not only demonstrate the terahertz radiation properties of layered GaTe bulk crystals, but also promise the potential application of terahertz emission spectroscopy for characterizing the surface properties of layered materials.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/PRJ.7.000518

所属栏目:Research Articles

基金项目:National Key Research and Development Program of China; Ministry of Industry and Information Technology of the People’s Republic of China (MIIT)10.13039/501100006579; Fundamental Research Funds for the Central Universities; Austrian Academic Exchange Service (?AD-WTZ); National Natural Science Foundation of China (NSFC)10.13039/501100001809;

收稿日期:2018-12-11

录用日期:2019-03-06

网络出版日期:2019-04-15

作者单位    点击查看

Jiangpeng Dong:State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Kevin-P. Gradwohl:Institute of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria
Yadong Xu:State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Tao Wang:State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Binbin Zhang:State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Bao Xiao:State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Christian Teichert:Institute of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria
Wanqi Jie:State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

联系人作者:Yadong Xu(xyd220@nwpu.edu.cn)

备注:National Key Research and Development Program of China; Ministry of Industry and Information Technology of the People’s Republic of China (MIIT)10.13039/501100006579; Fundamental Research Funds for the Central Universities; Austrian Academic Exchange Service (?AD-WTZ); National Natural Science Foundation of China (NSFC)10.13039/501100001809;

【1】J. Susoma, L. Karvonen, A. S yn tjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen and J. Riikonen. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Appl. Phys. Lett. 108, (2016).

【2】A. K. GeimA. K. Geim. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Science. 324, 1530-1534(2009).

【3】R. Ganatra and Q. Zhang. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. ACS Nano. 8, 4074-4099(2014).

【4】N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías and S. Ghosh. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Adv. Funct. Mater. 23, 5511-5517(2013).

【5】K. Allakhverdiev, M. Yetis, S. zbek, T. Baykara and E. Y. Salaev. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Laser Phys. 19, 1092-1104(2009).

【6】C. Ho and S. Lin. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Appl. Phys. 100, (2006).

【7】M. Yamashita, C. Otani, H. Okuzaki and M. Shimizu. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. 30th URSI General Assembly and Scientific Symposium. 1-4(2011).

【8】J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Semicond. Sci. Technol. 20, S266-S280(2005).

【9】Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee and J.-P. Hubschman. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. IEEE Trans. Terahertz Sci. Technol. 1, 201-219(2011).

【10】K. Fukunaga, Y. Ogawa, S. I. Hayashi and I. Hosako. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. IEICE Electron. Express. 4, 258-263(2007).

【11】L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider and A. W. Holleitner. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Nat. Commun. 3, (2012).

【12】P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov and Y. P. Svirko. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Sci. Rep. 4, (2014).

【13】P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov and Y. P. Svirko. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Rev. B. 90, (2014).

【14】Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai and X. L. Xu. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Phys. Chem. C. 122, 481-488(2018).

【15】Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai and X. Xu. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. ACS Appl. Mater. Interfaces. 9, 4956-4965(2017).

【16】L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du and X. Xu. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Rev. B. 96, (2017).

【17】K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao and X. Xu. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Appl. Surf. Sci. 448, 416-423(2018).

【18】K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan and S. Ma. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. IEEE Nuclear Science Symposium & Medical Imaging Conference. 3719-3724(2010).

【19】F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko and K. Tanigaki. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. ACS Nano. 8, 752-760(2014).

【20】A. Al-GhamdiA. Al-Ghamdi. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Therm. Anal. Calorim. 94, 597-600(2008).

【21】G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy and N. C. Fernelius. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. IEEE J. Sel. Top. Quantum Electron. 17, 30-37(2011).

【22】J. Sánchez-Royo, A. Segura and V. Mu oz. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Status Solidi A. 151, 257-265(1995).

【23】A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida and N. Miura. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Rev. B. 64, (2001).

【24】S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong and J. Li. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. ACS Nano. 10, 8964-8972(2016).

【25】O. Balitskii, B. Jaeckel and W. Jaegermann. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Lett. A. 372, 3303-3306(2008).

【26】P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber and I. Yarovets. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Metallofizika i Noveishie Tekhnologii. 37, 789-801(2015).

【27】Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He and B. Chen. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Chem. Chem. Phys. 18, 18719-18726(2016).

【28】T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie and W. Jie. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Crystals. 8, (2018).

【29】J. J. Fonseca VegaJ. J. Fonseca Vega. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Bandgap Engineering of Gallium Telluride. (2017).

【30】H. Güder, B. Abay, H. Efeo lu and Y. Yo urt u. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Lumin. 93, 243-248(2001).

【31】P. C. Planken, H.-K. Nienhuys, H. J. Bakker and T. Wenckebach. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Opt. Soc. Am. B. 18, 313-317(2001).

【32】A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin and M. Alexander. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Appl. Phys. Lett. 64, 1324-1326(1994).

【33】S. Vidal, J. Degert, M. Tondusson, E. Freysz and J. Oberlé. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Opt. Soc. Am. B. 31, 149-153(2014).

【34】R. HuberR. Huber. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Rev. Lett. 94, (2005).

【35】X. Xu, J. Xu and X.-C. Zhang. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Opt. Lett. 31, 978-980(2006).

【36】Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim and P. C. Planken. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. ACS Nano. 8, 9089-9096(2014).

【37】P. Gu, M. Tani, S. Kono, K. Sakai and X.-C. Zhang. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Appl. Phys. 91, 5533-5537(2002).

【38】M. B. Johnston, D. Whittaker, A. Corchia, A. Davies and E. H. Linfield. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Phys. Rev. B. 65, (2002).

【39】M. Reid and R. Fedosejevs. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Appl. Phys. Lett. 86, (2005).

【40】R. W. BoydR. W. Boyd. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Nonlinear Optics. (2003).

【41】X. C. Zhang and D. Auston. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. J. Appl. Phys. 71, 326-338(1992).

引用该论文

Jiangpeng Dong, Kevin-P. Gradwohl, Yadong Xu, Tao Wang, Binbin Zhang, Bao Xiao, Christian Teichert, and Wanqi Jie, "Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy," Photonics Research 7(5), 518-525 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF