Photonics Research, 2019, 7 (5): 05000594, Published Online: May. 5, 2019   

Whispering-gallery mode hexagonal micro-/nanocavity lasers [Invited] Download: 915次

Author Affiliations
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Whispering-gallery-mode (WGM) hexagonal optical micro-/nanocavities can be utilized as high-quality (Q) resonators for realizing compact-size low-threshold lasers. In this paper, the progress in WGM hexagonal micro-/nanocavity lasers is reviewed comprehensively. High-Q WGMs in hexagonal cavities are divided into two kinds of resonances propagating along hexagonal and triangular periodic orbits, with distinct mode characteristics according to theoretical analyses and numerical simulations; however, WGMs in a wavelength-scale nanocavity cannot be well described by the ray model. Hexagonal micro-/nanocavity lasers can be constructed by both bottom-up and top-down processes, leading to a diversity of these lasers. The ZnO- or nitride-based semiconductor material generally has a wurtzite crystal structure and typically presents a natural hexagonal cross section. Bottom-up growth guarantees smooth surface faceting and hence reduces the scattering loss effectively. Laser emissions have been successfully demonstrated in hexagonal micro-/nanocavities synthesized with various materials and structures. Furthermore, slight deformation can be easily introduced and precisely controlled in top-down fabrication, which allows lasing-mode manipulation. WGM lasing with excellent single-transverse-mode property was realized in waveguide-coupled ideal and deformed hexagonal microcavity lasers.

Yue-De Yang, Min Tang, Fu-Li Wang, Zhi-Xiong Xiao, Jin-Long Xiao, Yong-Zhen Huang. Whispering-gallery mode hexagonal micro-/nanocavity lasers [Invited][J]. Photonics Research, 2019, 7(5): 05000594.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!