首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508027--1)

高非线性光子晶体光纤中的声光相互作用

Interaction of Acoustic Phonons and Photons in Highly Nonlinear Photonic Crystal Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高非线性光子晶体光纤具有小纤芯、大折射率对比度的特点,其周期性的空气孔结构使得导引声波布里渊散射(GAWBS)激发的声子被束缚在纤芯区域,产生显著的声光相互作用。声子通过调制光纤材料的折射率,从而对光波的相位进行调制。利用Sagnac干涉环将相位调制转化为强度调制,在光子晶体光纤中实现了1550 nm和1060 nm波段GAWBS声子的激发和探测。实验测得在1550 nm和1060 nm波长抽运下声子基模频率均约为1.24 GHz,验证了前向布里渊散射声子频率与抽运光波长无关的理论。

Abstract

Highly nonlinear photonic crystal fibers have the characteristics of small core and large refractive index contrast. Due to its periodic air hole structure, the phonons generated by the guided acoustic-wave Brillouin scattering (GAWBS) are tightly trapped in the core area and interact significantly with photons. The refractive index of the fiber will be modulated by phonons, resulting in a phase modulation on optical waves. Using the Sagnac interferometry to transform phase modulation to intensity modulation, we demonstrate the generation and detection of phonons by GAWBS in the photonic crystal fiber in the 1550 nm and 1060 nm bands, respectively. The experimental results show that the fundamental mode frequency of acoustic phonons is 1.24 GHz for both cases with the pump wavelengths of 1550 nm and 1060 nm, respectively, which verifies the theory that the phonon frequency in forward Brillouin scattering is independent of the pump wavelength.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0508027

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(61335002)

收稿日期:2019-02-21

修改稿日期:2019-03-25

网络出版日期:2019-04-08

作者单位    点击查看

丁思明:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
杨四刚:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
杨益:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
李进延:武汉光电国家研究中心, 武汉 430074
陈明华:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
谢世钟:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084

联系人作者:杨四刚(ysg@tsinghua.edu.cn)

【1】Shelby R M, Levenson M D and Bayer P W. Guided acoustic-wave Brillouin scattering. Physical Review B. 31(8), 5244-5252(1985).

【2】Kang M S, Nazarkin A, Brenn A et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Physics. 5(4), 276-280(2009).

【3】Kang M S and Joly N Y. Russell P S J. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Optics Letters. 38(4), 561-563(2013).

【4】Broderick N G R, Monro T M, Bennett P J et al. . Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters. 24(20), 1395-1397(1999).

【5】sElser D, Andersen U L, Korn A et al. . Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers. Physical Review Letters. 97(13), (2006).

【6】Shibata N, Nakazono A, Taguchi N et al. Forward Brillouin scattering in holey fibers. IEEE Photonics Technology Letters. 18(2), 412-414(2006).

【7】Dainese P. Russell P S J, Wiederhecker G S, et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Optics Express. 14(9), 4141-4150(2006).

【8】Kang M S, Brenn A, Wiederhecker G S et al. Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers. Applied Physics Letters. 93(13), (2008).

【9】Wiederhecker G S, Brenn A, Fragnito H L et al. Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers. Physical Review Letters. 100(20), (2008).

【10】Kang M S and Joly N Y. Russell P S J. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Optics Letters. 38(4), 561-563(2013).

【11】Pang M, Jiang X, He W et al. Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core. Optica. 2(4), 339-342(2015).

【12】Pang M and He W. Russell P S J. Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber. Optics Letters. 41(19), 4601-4604(2016).

【13】Antman Y, Clain A, London Y et al. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering. Optica. 3(5), 510-516(2016).

【14】Otterstrom N T, Behunin R O, Kittlaus E A et al. A silicon Brillouin laser. Science. 360(6393), 1113-1116(2018).

【15】Gundavarapu S, Brodnik G M, Puckett M et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nature Photonics. 13(1), 60-67(2019).

【16】Wiederhecker G S, Brenn A, Fragnito H L et al. Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers. Physical Review Letters. 100(20), (2008).

【17】Dainese P. Russell P S J, Wiederhecker G S, et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Optics Express. 14(9), 4141-4150(2006).

引用该论文

Ding Siming,Yang Sigang,Yang Yi,Li Jinyan,Chen Minghua,Xie Shizhong. Interaction of Acoustic Phonons and Photons in Highly Nonlinear Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508027

丁思明,杨四刚,杨益,李进延,陈明华,谢世钟. 高非线性光子晶体光纤中的声光相互作用[J]. 中国激光, 2019, 46(5): 0508027

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF