基于非线性极大似然检测的弱小目标检测方法
Small Target Detection Method Based on Maximum Likelihood Estimation
摘要
针对序列星空图像极大似然估计方法检测非线性运动弱小目标效果较差的问题,提出了一种基于非线性极大似然检测的弱小目标检测方法。首先对目标的运动方程进行泰勒展开,然后以一定的阶次的方程仿真目标在星图上的运动,并通过序列图像在非线性空间解算目标运动的非线性参数,获得目标的运动方程。最后通过归一化斑点检测算子对结果图像中的目标进行检测。实验结果表明在目标信噪比低于2且进行非线性运动时,提出的方法检测目标效果较好。
Abstract
Aiming at the problem that the maximum likelihood estimation method for detecting nonlinear moving objects is inefficient, a small target detection method based on nonlinear maximum likelihood detection is proposed. First, the motion equation of the target is expanded by Taylor. Then the motion of the target on the star map is simulated by a certain order equation, and the motion equation of the target is obtained through solving the nonlinear parameters of the target motion in nonlinear space through sequential images. Finally, the target in the result image is detected by the normalized speckle detection operator. The experimental results show that the the target can be detected when the signal-to-noise ratio of the target is less than 2.
中图分类号:TP391
所属栏目:光电测量
基金项目:国家重点基础研究发展计划(2013CB733100) 资助项目
收稿日期:2018-06-08
修改稿日期:2018-09-13
网络出版日期:--
作者单位 点击查看
梅风华:中国人民解放军92857部队, 北京 100071
联系人作者:侯旺(Simon_Zero@126.com)
备注:侯旺(1985-),男 ,博士,工程师,主要从事弱小目标检测、信号处理方面的研究工作。
【1】Sun J, Yanning Z, Zheng J, et al. Small and Dim Moving Target Detection in Deep Space Background[Z]. 2008.
【2】Sun J, Zhang Y, Jiang L, et al. Small and Dim Target Detection Based on Motion Integration in Visual Attention Model[C]. IEEE, 2008.
【3】Zhang H, Yicheng B, Li J. An algorithm of small and dim target detection in deep space background[C]. Zhuhai/Macau, China: IEEE, 2009.
【5】焦姣, 谢永杰, 张华良, 等. 基于小波滤波背景预测的红外弱小目标检测方法[J]. 计算机科学, 2016, 43(2): 60-63.
JIAO Jiao, XIE Yong-jie, ZHANG Hua-liang, et al. Infrared dim and small target detection based on background prediction by wavelet filter[J]. Computer Science, 2016, 43(2): 60-63.
【7】李志敏, 殷蓓蓓, 张萍, 等. 一种实时性缺陷定位方法及其可视化实现[J]. 计算机工程, 2017, 43(2): 111-119.
LI Zhi-ming, YIN Bei-bei, ZHANG Ping, et al. A real-time fault localization method and its visualization implementation[J]. Computer Engineering, 2017, 43(2): 111-119.
【8】侯旺, 欧阳红军, 雷志辉, 等. 基于类内一致性的红外背景弱目标检测方法[J]. 计算机工程, 2013, 38(13): 209-217.
HOU Wang, OUYANG Hong-jun, LEI Zhi-hui, et al. Infrared background weak target detection method based on consistency in class[J]. Computer Engineering, 2013, 38(13): 209-217.
【10】侯旺, 孙晓亮, 尚洋, 等. 红外弱小目标检测技术研究现状与发展趋势[J]. 红外技术, 2015, 37(1): 5-8.
HOU Wang, SUN Xiao-liang, SHANG Yang, et al. Present state and perspectives of small infrared targets detection technology[J]. Infrared Technology, 2015, 37(1): 5-8.
【11】刘可辉, 王晓蕊, 张卫国. 红外点目标成像信噪比建模分析[J]. 红外与激光工程, 2014, 43(7): 2143-2147.
LIU Ke-hui, WANG Xiao-rui, ZHANG Wei-guo. Modeling and analysis on SNR of infrared point target[J]. Infrared and Laser Engineering, 2014, 43(7): 2143-2147.
【12】王鲲鹏, 马超伟, 侯旺, 等. 凝视观测图像空间弱小目标检测方法[J]. 应用光学, 2014, 35: 614-618.
WANG Kun-peng, MA Chao-wei, HOU Wang, et al. Space object detection method for observation image in stare mode[J]. Journal of Applied Optics, 2014, 35(4): 614-618.
【15】行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法[J]. 物理学报, 2012, 61(16): 160501-160504.
XING Hong-yan, GONG Ping, XU Wei. Small target detection in the background of sea clutter using fractal method[J]. Acta Physics Sinica, 2012, 61(16): 160501-160504.
引用该论文
HOU Wang,MEI Feng-hua. Small Target Detection Method Based on Maximum Likelihood Estimation[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2019, 17(1): 42-50
侯 旺,梅风华. 基于非线性极大似然检测的弱小目标检测方法[J]. 光学与光电技术, 2019, 17(1): 42-50