光谱学与光谱分析, 2019, 39 (5): 1433, 网络出版: 2019-05-13  

基于蒙特卡洛模型的脊髓损伤后神经细胞定位方法

Study of Nerve Cell Localization after Spinal Cord Injury Based on Monte Carlo Model
作者单位
1 西安邮电大学通信与信息工程学院, 陕西 西安 710121
2 西北工业大学电子信息工程学院, 陕西 西安 710072
3 西安电子科技大学综合业务网国家重点实验室, 陕西 西安 710071
摘要
交通事故、 高空坠落、 重物砸伤等原因, 可能导致人体脊髓损伤(spinal cord injury, SCI)。 SCI中断了人体神经信号的传输信道, 患者大多高位截瘫, 丧失肢体功能, 大小便失禁, 导致终生残疾, 生活异常艰难。 2016年世界卫生组织统计数据显示, 全世界SCI患病率为(258~785人)/百万人口, 每年新发病率为(13.8~86人)/百万人口。 目前全球约有SCI患者600万人, 并且每年新增约60万人。 脊髓损伤一直是医学界的重难点研究课题, 医生和科研人员经过长期的研究与探索, 目前仍未找到有效的治疗方案来修复脊髓损伤后的微环境以及促使损伤神经的再生。 该方法主要针对以下两方面问题: (1) 常规的检测仪器如X射线、 核磁共振MRI检查、 CT等传统仪器只是影像和形态学方面的观察, 不能对脊髓损伤部位的神经细胞进行定位和实时的活性分析, 致使医生和科研人员对患者的病情不能精确把握, 极有可能延误患者病情, 甚至危及患者生命。 (2) 2013年12月, 西安邮电大学量子通信团队提出采用量子中继“搭桥”的方式, 即利用量子纠缠传态在脊髓损伤上断点和下断点建立“连接”, 来实现人体神经信号中继的方法; 并联合西安交通大学医学院进行大鼠和白兔的实验, 取得了突破性进展。 2015年1月16日, 中国科学院再生医学研究团队联合中国武警脑科医院, 结合间充质干细胞, 使用神经细胞再生支架完成世界首例脊髓损伤“搭桥”手术, 并取得了良好的治疗效果。 如何保证“搭桥”是建立在活性神经细胞上, 而不是已经坏死的神经细胞上? 如何找到合适的“桥墩”位置, 使“搭桥”的距离尽可能小以保证神经信号传输的保真度能够尽可能的高? 该文提出的方法可以实现对脊髓损伤后的神经细胞进行精确定位。 光谱分析越来越广泛的被应用在生物医学领域, 对某些疾病的早期发现和无创或微创的高效检测起着至关重要的作用。 神经特异性核蛋白可以用来特异性识别神经细胞, 由于存活的神经细胞才会产生神经递质, 因此, 在动物实验的基础上, 通过蒙特卡洛模型模拟光子在生物组织中的传输, 对平面Oxy建立极坐标转换, 得出光在生物组织中的衰减系数矩阵的计算方法, 对脊髓损伤前后的相同位置进行近红外光检测, 用聚类算法对神经元特异性核蛋白和神经递质的检测数据进行处理, 通过matlab仿真, 得出脊髓损伤前后衰减系数的二维分布图, 确定Oxy平面中脊髓损伤部位体素的X和Y坐标, 在Oxy平面的异常部位选取异常点W与Z轴建立Ozw平面, 最终确定脊髓损伤部位神经细胞的位置坐标。 该方法可以为医生和科研人员在脊髓损伤患者肢体功能重建的研究中提供理论依据。
Abstract
Traffic accidents, falling from high altitude, and bruises caused by heavy objects may cause Spinal Cord Injury (SCI). SCI interrupted the transmission channel of human nerve signal. Most patients had paraplegia, lost their physical function, and had incontinence resulting in permanent disability . According to the statistics of the World Health Organization in 2016, the prevalence of SCI in the world is (258~785) per million people, and the annual incidence rate is (13.8~86) per million people. At present, there are about 6 million patients in the world, and about 600 000 people are newly added every year. SCI has been a difficult research topic in the medical community. After long-term’s research and exploration, doctors and researchers have not found an effective treatment method to repair the micro-environment and promote the regeneration of injured nerve after SCI. The method proposed in this paper focuses on the following aspects: (1) Conventional detection instruments such as X-ray, MRI, CT and others only in imaging and morphological observations, which can not locate the nerve cells in the SCI area and can not analyze the activity in real-time. As a result, doctors and researchers can’t grasp the condition of the patient accurately and it is likely to delay the patient’s condition and even endanger the patient’s life. (2) In December 2013, the quantum communication team of Xi’an University of Posts &Telecommunications proposed the quantum relay “bridge” method, which uses quantum entanglement to establish a “connection” between the upper and the lower break point of SCI to achieve human neural signal relay. And the University together with the Xi’an Jiaotong University completed the experiments on rats and rabbits which have made breakthroughs; on January 16, 2015, the Chinese Academy of Sciences regenerative medicine research team and the Chinese Armed Police Brain Hospital combined with mesenchymal stem cells and used nerves. The Cell Regeneration Scaffold completed the “first bypass” surgery for the first SCI in the world and achieved a good therapeutic effect. How to ensure that the “bridge” is built on the alive nerve cells, not on the died nerve cells? How to find a suitable “bridge pier” position so that the “bridge” distance is as short as possible to ensure that the fidelity of the neural signal transmission can be higher? By the method proposed in this paper, we can find the accurate position of nerve cells after SCI. Spectroscopic analysis techniques are widely used in the biomedical field and play a crucial role in the early detection and have a highly efficient detection in certain diseases. Neuron-specific nuclear protein can be used to specifically identify nerve cells. Since the surviving nerve cells can produce neurotransmitters, this article based on animal experiments, simulates photon transmission in biological tissues through the Monte Carlo model. Establishing a polar coordinate transformation in the plane Oxy, calculating the attenuation coefficient matrix of light in biological tissues, detecting near-infrared light at the same position before and after SCI, the clustering algorithm was used to process the neuron-specific nuclear protein and neurotransmitter detection data. Through matlab simulation, a two-dimensional distribution map of the attenuation coefficient before and after SCI was obtained. The coordinates of the voxels in the spinal cord injury area in Oxy are determined, in the anomalous part of the plane Oxy, the abnormal point W and the Z axis are selected to establish the plane Ozw, and the position coordinates of the nerve cells at the site of the SCI are finally determined. The method proposed in this paper can provide theoretical basis for doctors and researchers in the study of limb function reconstruction in patients with SCI.

聂敏, 芦春雷, 刘蒙, 杨光, 裴昌幸. 基于蒙特卡洛模型的脊髓损伤后神经细胞定位方法[J]. 光谱学与光谱分析, 2019, 39(5): 1433. NIE Min, LU Chun-lei, LIU Meng, YANG Guang, PEI Chang-xing. Study of Nerve Cell Localization after Spinal Cord Injury Based on Monte Carlo Model[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1433.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!