首页 > 论文 > 光谱学与光谱分析 > 39卷 > 5期(pp:1468-1471)

基于拉曼光谱技术鉴别新陈大米的方法研究

Study on Rapid Discrimination of Fresh and Stale Rice Based on Raman Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于拉曼光谱检测技术结合化学判别方法, 建立新陈大米拉曼光谱判别模型; 建立适当的样品预处理方法, 确保样品制备的均一性, 使用拉曼光谱仪对新陈大米共计60组样品进行检测, 在785 nm波长激光激发下, 获取样品200~2 400 cm-1的拉曼光谱信息; 对原始拉曼光谱进行基线校正、 平滑、 滤波等处理。 利用主成分分析法(PCA)对拉曼光谱进行降维处理及粗分类鉴别; 基于偏最小二乘分析法(PLS), 建立新陈大米快速鉴别模型, 该模型对建模训练集鉴别正确率为100%, 模型验证集鉴别正确率为95%。 结果表明: 该模型判断新陈大米是可行的, 为大米新陈度的快速判别提供了一种新的方法。

Abstract

A prediction discrimination model of fresh and stale rice was established based on Raman Spectroscopy and Chemometrics. The pretreatment processes have to be employed before the experiment. A total of 60 samples were put in the special box. The samples were measured by 785nm Raman spectrometer, which can collect spectral range of 200~2 400 cm-1. Smoothing, baseline correction were conducted to process the raw spectra. Principal Component Analysis (PCA) was employed to reduce dimension analysis of full-wave band of fresh and stale rice, and it could classify the samples preliminarily. The discrimination model was developed with Partal Least Squares (PLS). The correct classification rates in the training set and prediction set were 100% and 95%, respectively. The results in this research indicated it is a quickly useful method to discriminate between fresh and stale rice.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TS212.7

DOI:10.3964/j.issn.1000-0593(2019)05-1468-04

基金项目:国家重大科学仪器设备开发专项(2017TFF0108900)资助

收稿日期:2016-07-20

修改稿日期:2017-03-09

网络出版日期:--

作者单位    点击查看

赵 迎:钢铁研究总院, 北京 100081钢研纳克检测技术股份有限公司, 北京 100094
李 明:钢研纳克检测技术股份有限公司, 北京 100094
王小龙:钢研纳克检测技术股份有限公司, 北京 100094
李小佳:钢研纳克检测技术股份有限公司, 北京 100094

联系人作者:赵迎(zhaoying@ncschina.com)

备注:赵 迎, 1989年生, 钢研纳克检测技术股份有限公司光学工程师

【1】HOU Cai-yun, LI Hui-yuan, SHANG Yan-fen, et al(侯彩云, 李慧园, 尚艳芬, 等). Journal of the Chinese Cereals and Oils Association(中国粮油学报), 2003, 18(4): 80.

【2】ZHANG Yu-rong, ZHOU Xian-qing, YANG Lan-lan(张玉荣, 周显青, 杨兰兰). Journal of the Chinese Cereals and Oils Association(中国粮油学报), 2009, 24(8): 155.

【3】ZHOU Xian-qing, ZHANG Yu-rong(周显青, 张玉荣). Cereal & Feed Industry(粮食与饲料工业), 2011, (5): 37.

【4】RUI Chuang, LIU Ying, SUN Jian-ping(芮 闯, 刘 莹, 孙建平). Food Science and Technology(食品科技), 2012, 37(3): 164.

【5】HAN Xiao-zhen, GUO Zheng-ye, KANG Yan, et al(韩孝联, 郭正也, 康 燕, 等). Acta Optica Sinica(光学学报), 2015, 35(1): 130003.

【6】SUN Juan, ZHANG Hui, WANG Li, et al(孙 娟, 张 晖, 王 立, 等). Food & Machinery(食品与机械), 2016, 32(1): 41.

【7】HUANG Ya-wei, ZHANG Ling, WANG Ruo-lan(黄亚伟, 张 令, 王若兰). Modern Food Science and Technology(现代食品科技), 2014, 30(12): 149.

【8】SUN Lu, CHEN Bin, GAO Rui-chang, et al(孙 璐, 陈 斌, 高瑞昌, 等). Journal of Chinese Institute of Food Science and Technology(中国食品学报), 2012, 12(12): 113.

【9】ZHAO Xiao-rong, ZHANG Lan-tian, WANG Li-jun, et al(赵肖蓉, 张兰天, 王利军, 等). The Food Industry(食品工业), 2012, 33(12): 158.

【10】Lee H, Cho B K, Kim M S, et al. Sensors and Actuators B: Chemical, 2013, 185: 694.

引用该论文

ZHAO Ying,LI Ming,WANG Xiao-long,LI Xiao-jia. Study on Rapid Discrimination of Fresh and Stale Rice Based on Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1468-1471

赵 迎,李 明,王小龙,李小佳. 基于拉曼光谱技术鉴别新陈大米的方法研究[J]. 光谱学与光谱分析, 2019, 39(5): 1468-1471

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF