多波段全天空气辉成像仪光学系统设计
Design of Optical System for Multi-band All-sky Airglow Imager
摘要
为了降低多波段全天空成像仪的复杂度和研制成本, 提出了一种免调焦、高鲁棒性的多波段全天空成像光学系统方案.采用像方远心鱼眼镜头加物方远心像方准远心的有限共轭距成像镜组成二次成像系统, 货架级的窄带滤光片置于一次像面处, 使用H-FK61和KF2两种玻璃实现全系统复消色差.设计结果表明:系统F数为2.8, 波段范围427.8~865 nm, 色焦移小于0.048 mm, 系统8个观测通道的光学传递函数都在0.46以上, 满足使用要求, 且滤光片公差容限非常宽松, 面形公差PV≤λ/2、折射率公差±0.003、厚度公差±0.05, 货架级产品即可满足使用要求.相比传统方案, 该系统省去了探测器调焦机构、且不需要使用定制的窄带滤光片, 达到了简化系统降低成本的目的.
Abstract
In order to reduce the complexity and development cost of the multi-band all-sky imager, a multi-band all-sky imaging optical system with no focusing and high robustness is proposed. A secondary imaging system is composed of a telecentric fisheye lens and a finite conjugate distance imaging lens of the telecentric image. The shelf-level narrow-band filter is placed at the image plane, using H-FK61 and KF2 glasses achieve full system apochromatic. The design results show that the system F number is 2.8, the band range is 427.8~865 nm, the chromatic focal shift is less than 0.048 mm, and the optical transfer functions of the eight observation channels of the system are all above 0.46, which meets the application requirements. The tolerance of filter is very loose. The surface tolerance PV is less than λ/2, the refractive index tolerance is ±0.003, the thickness tolerance is ±0.05, and the shelf-level products can meet the application requirements. Compared with the traditional scheme, the system eliminates the detector focusing mechanism and does not need to use a customized narrow-band filter, which simplifies the system and reduces the cost.
中图分类号:O435
DOI:10.3788/gzxb20194805.0522003
基金项目:国家自然科学基金(Nos.61705253, 41005019), 中国科学院西部青年学者(No.XAB2016A07), 中国科学院光谱成像技术重点实验室开放研究基金(No.LSIT201701D)
收稿日期:2019-01-28
修改稿日期:2019-03-22
网络出版日期:--
作者单位 点击查看
冯玉涛:中国科学院西安光学精密机械研究所, 西安 710119
韩斌:中国科学院西安光学精密机械研究所, 西安 710119中国科学院大学, 北京 100049
李勇:中国科学院西安光学精密机械研究所, 西安 710119
孙剑:中国科学院西安光学精密机械研究所, 西安 710119
白清兰:中国科学院西安光学精密机械研究所, 西安 710119
联系人作者:李战涛(609468532@qq.com)
备注:李战涛(1993-), 男, 硕士研究生, 主要研究方向为光学系统设计.
【1】WANG Cui-mei, LI Qin-zeng, XU Ji-yao, et al. A study of wave sources of gravity wave events observer by OH airglow imager located at Donggang station[J]. Chinese Journal of Geophysics, 2018, 61(6): 2198-2206.
王翠梅, 李钦增, 徐寄遥, 等. 基于中国东港台站的OH气辉成像观测数据对重力波波源的事件分析[J]. 地球物理学报, 2018, 61(6): 2198-2206.
【2】TU Cui. Research on all-sky gravity wave imager[D]. Center for Space Science Applied Research, Chinese Academy of Sciences, 2011.
涂翠. 全天空大气重力波成像仪研究[D]. 中国科学院研究生院(空间科学与应用研究中心), 2011.
【3】AAMODT E K, EATHER R H, MENDE S B. Instrument for the monochromatic observation of all sky auroral images[J]. Applied Optics, 1977, 16(6): 1691-1700.
【4】CRISWIC K, JOHN R. An all-sky imager for observing airglow activity in the upper atmosphere[D]. York University, Toronto, 1996.
【5】SHIOKAWA K, KATOH Y, SATOH M, et al. Development of optical mesosphere thermosphere imagers (OMTI)[J]. Earth Planets & Space, 1999, 51(7-8): 887-896.
【6】TAGUCHI M, EJIRI M, TOMIMATSU K. A new all-sky optics for aurora and airglow imaging[J]. Advances in Polar Upper Atmosphere Research, 2004, 18: 140-148.
【7】REDMAN B J, SHAW J A, NUGENT P W, et al. Reflective all-sky thermal infrared cloud imager[J]. Optics Express, 2018, 26(9): 11276.
【8】NYASSOR P K, BURITI R A, PAULINO I, et al. Determination of gravity wave parameters in the airglow combining photometer and imager data[J]. Annales Geophysicae, 2018, 36(3): 705-715.
【11】KRYSZCZYNSK I, TADEUS Z. Secondary spectrum aberrations of refractive optical systems[J]. SPIE, 1995, 2208: 18-27.
引用该论文
LI Zhan-tao,FENG Yu-tao,HAN Bin,LI Yong,SUN Jian,BAI Qing-lan. Design of Optical System for Multi-band All-sky Airglow Imager[J]. ACTA PHOTONICA SINICA, 2019, 48(5): 0522003
李战涛,冯玉涛,韩斌,李勇,孙剑,白清兰. 多波段全天空气辉成像仪光学系统设计[J]. 光子学报, 2019, 48(5): 0522003