首页 > 论文 > 光子学报 > 48卷 > 5期(pp:512002--1)

基于SS-OCT的大范围眼轴长度测量系统

Large-scale Axial Length Measuring System Based on SS-OCT

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统眼轴长度测量需要分段检测且测量误差较大的问题, 设计了一种具有大探测范围的扫频光学相干层析系统, 实现了对眼轴长度的单次完整测量.提出了自适应峰值点提取与自适应误差校正相结合的算法,实现了大深度干涉信号的重构; 利用CPU-GPU协同加速技术实现了系统的实时测量, 解决了大范围探测数据量大、处理速度慢的问题.对光学眼模型进行实验, 结果表明:该系统对眼轴长度的测量误差为0.01 mm, 优于传统分段测量系统, 系统单次测量时间为0.10 s, 满足实时测量要求.

Abstract

To solve the problem that the traditional measurement method of axial length is segmented detection and the measurement error is large, a swept-source optical coherence tomography system with large detection range and realized one-time measurement of axial length was designed. In order to reconstruct the large depth interference signal, an algorithm combining adaptive peak point extraction and adaptive error correction was proposed. The CPU-GPU acceleration technology was used to realize the real-time measurement and solve the problem of great data and slow speed of wide imaging range. Optical eye model experiments shows that the measurement error of axial length is 0.01 mm, which is superior to the traditional segment measurement system. The single measurement time is 0.10 seconds, which meets the real-time measurement requirements.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/gzxb20194805.0512002

基金项目:天津市自然科学基金(No.15JCQNJC14200)

收稿日期:2018-11-12

修改稿日期:2019-01-08

网络出版日期:--

作者单位    点击查看

刘珊珊:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
汪毅:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
张玮茜:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
陈文光:上海美沃精密仪器股份有限公司, 上海 200237
蔡怀宇:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
陈晓冬:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072

联系人作者:刘珊珊(liushanshan@tju.edu.cn)

备注:刘珊珊(1996-), 女, 硕士研究生, 主要研究方向为光学相干断层成像技术.

【1】BRANISLAY G, MICHAEL P, CHRISTOPH K, et al. High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry[J].Optics Express, 2008,16(4): 2405-2414.

【2】蔡守东,李鹏,王辉,等. 一种测量眼轴光程值的OCT系统及方法:中国, CN103976707A [P].2014-08-13.

【3】LI Y, LI H X, LIU Y C,et al. Comparison of immersion ultrasound and low coherence reflectometry for ocular biometry in cataract patients[J]. International Journal of Ophthalmology, 2018, 11(6): 966.

【4】RUGGERI M, UHLHORN S R, FREITAS C D,et al. Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch[J]. Biomedical Optics Express, 2012, 3(7): 1506-1520.

【5】TAO A, SHAO Y, ZHONG J,et al. Versatile optical coherence tomography for imaging the human eye[J]. Biomedical Optics Express, 2013, 4(7): 1031-1044.

【6】SHIRAZI M F, WIJESINGHE R E, RAVICHANDRAN N K, et al. Dual-path handheld system for cornea and retina imaging using optical coherence tomography[J]. Optical Review, 2017, 24: 1-7.

【7】WANG Y, FENG L, ZHU L,et al. Measurement of ocular axial length using full-range spectral-domain low-coherence interferometry[J]. Chinese Optics Letters, 2018, 16(3): 031701.

【8】FAN S, LI L, LI Q,et al. Dual band dual focus optical coherence tomography for imaging the whole eye segment[J]. Biomedical Optics Express, 2015, 6(7): 2481.

【9】KIM H J, KIM M, HYEON M G,et al. Full ocular biometry through dual-depth whole-eye optical coherence tomography[J]. Biomedical Optics Express, 2018, 9(2): 360.

【10】GRULKOWSKI I, MANZANERA S, CWIKLINSKI L,et al. Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye[J]. Optica, 2018, 5(1): 52-59.

【11】LU CD, WAHEED NK, WITKIN A,et al. Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging[J]. Ophthalmic Surgery Lasers & Imaging Retina, 2018, 49(2): 94-102.

【12】BUTLER T P, SLEPNEVA S, MCNAMARA P M, et al. Real-time experimental measurement of swept source VCSEL properties relevant to OCT imaging[J]. IEEE Photonics Journal, 2017, 9(5): 1505810.

【13】WANG X, LI ZL, NAN N,et al. A simple system of swept source optical coherence tomography for a large imaging depth range[J]. Optics Communications, 2019, 431: 51-57.

【14】HILLMANN D, SPAHR H, SUDKAMP H, et al. Off-axis reference beam for full-field swept-source OCT and holoscopy[J]. Optics Express, 2017, 25(22): 27770.

【15】REITBLAT O, LEVY A, KLEINMANN G, et al. Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500[J]. Eye, 2018, 32(7): 1244-1252.

【16】NAPOLI C, PAPPALARDO G, TRAMONTANA E,et al. A cloud-distributed GPU architecture for pattern identification in segmented detectors big-data surveys[J]. Computer Journal, 2018, 59(3): 338-352.

【17】HOEHN A L, THOMASY S M, KASS P H,et al. Comparison of ultrasonic pachymetry and Fourier-domain optical coherence tomography for measurement of corneal thickness in dogs with and without corneal disease[J]. Veterinary Journal,2018, 242: 59-66.

【18】DAI C, ZHOU C, JIAO S,et al. In-vivo full depth of eye imaging spectral domain optical coherence tomography[C]. SPIE, 2011, 8185(1): 48.

引用该论文

LIU Shan-shan,WANG Yi,ZHANG Wei-qian,CHEN Wen-guang,CAI Huai-yu,CHEN Xiao-dong. Large-scale Axial Length Measuring System Based on SS-OCT[J]. ACTA PHOTONICA SINICA, 2019, 48(5): 0512002

刘珊珊,汪毅,张玮茜,陈文光,蔡怀宇,陈晓冬. 基于SS-OCT的大范围眼轴长度测量系统[J]. 光子学报, 2019, 48(5): 0512002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF