首页 > 论文 > 红外与激光工程 > 48卷 > 5期(pp:526001--1)

基于多源数据多特征融合的弱小目标关联研究

Dim and small target association based on multi-source data and multi-feature fusion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

异质传感器弱小群目标关联是传感器协同探测首先要解决的问题。即使在同视场下, 由红外光电系统和雷达组成的异质传感器探测目标也不完全一致, 特别是远距离探测时, 雷达探测目标多而密集,红外光电系统探测目标相对较少, 此时目标航迹关联结果具有很大不确定性。针对这一难题, 采用基于多源数据多特征融合的弱小目标关联方法, 首先基于多模型估计方法筛选同类型目标作为潜在关联目标, 再基于航迹关联算法对同类型目标粗关联, 最后基于多特征最大联合概率分布对目标精细关联。经红外光电系统/雷达同站址探测仿真试验验证, 相比于仅利用航迹进行目标关联, 该方法有效提高了弱小目标关联的准确性。

Abstract

The dim and small target association of heterogeneous sensors is the first problem to be solved by cooperative detection of sensors. Even in the same field of view, the detection targets of heterogeneous sensors composed of infrared photoelectric systems and radar are not exactly the same, especially in the long-distance detection, the radar detection targets are many and dense, while the detection targets of infrared photoelectric systems are relatively few, so the target track association result has a great uncertainty. Aiming at this problem, the dim and small target association method based on multi-source data and multi-feature fusion was firstly proposed based on the multi-model estimation method, selecting the same type of targets as the potential association target, then making the rough association of the same type of targets based on the track association algorithm, and finally making fine association of targets based on the multi-feature maximum joint probability distribution. The simulation tests of infrared photoelectric systems/radar are verified by the same station site detection that this method effectively improves the accuracy of the association of dim and small targets compared with only using track for target association.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN215

DOI:10.3788/irla201948.0526001

所属栏目:信息获取与辨识

收稿日期:2018-12-10

修改稿日期:2019-01-18

网络出版日期:--

作者单位    点击查看

刘 铮:中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学院大学, 北京 100049光学辐射重点实验室, 北京 100854
毛宏霞:光学辐射重点实验室, 北京 100854
戴聪明:中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031
魏合理:中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031

联系人作者:刘铮(mchina@sina.com)

备注:刘铮(1981-), 男, 高级工程师, 博士生, 主要从事目标特性与识别方面的研究。

【1】Fang Feng, Cai Yuanli. Multi-sensor space registration for maneuvering target tracking [J]. Journal of Solid Rocket Technology, 2016, 39(4): 574-581. (in Chinese)

【2】Niu Xichen, Xiong Jiajun, Ding Xiao. Fuzzy data association based on multi-feature and multi-target [J]. Fire Control & Command Control, 2015, 40(10): 46-52. (in Chinese)

【3】Han Hong, Liu Yuncai, Han Chongzhao, et al. Sequential track-association algorithm in multi-target tracking system by using the multi-sensor information fusion[J]. Signal Processing, 2004, 20(1): 30-34. (in Chinese)

【4】Keshavarz H, Tajeripour F, Faghihi R, et al. Developing a new approach for registering LWIR and MWIR images using local transformation function [J]. Signal, Image and Video Processing, 2015, 9(1): 29-36.

【5】Sajjad Safari, Faridoon Shabani, Dan Simon. Multirate multisensor data fusion for linear systems using Kalman filters and a neural network[J]. Aerospace Science and Technology, 2014, 39: 465-471.

【6】Bahador Khaleghi, Alaa Khamis, Fakhreddine O Karray, et al. Multisensor data fusion: A review of the state-of-the-art[J]. Information Fusion, 2013, 14: 28-44.

【7】Lv Dechao, Fan Jiangtao, Han Gangweng, et al. A review of particle filters[J]. Astronomical Research & Technology, 2013, 10(4): 397-409. (in Chinese)

【8】Qu Congshan, Xu Hualong, Tan Ying. A survey of nonlinear Bayesian filtering algorithms[J]. Electronics Optics & Control, 2008, 15(8): 64-71. (in Chinese)

【9】Gao Yu, Zhang Jianqiu, Yin Jianjun. Polynomial prediction model and tracking algorithm of maneuver target [J]. Acta Aeronautica Et Astronautica Sinica, 2009, 30(8): 1479-1489. (in Chinese)

【10】Chen Zhifeng, Cai Yunze. Data fusion algorithm for multi-sensor dynamic system based on interacting multiple model[J]. Journal of Shanghai Jiaotong University (Science), 2015, 20(3): 265-272. (in Chinese)

【11】Wang Mingkun, Zhang Chenxin, Zhang Xiaokuan. Research on typical maneuvering target dynamic RCS characteristics[J]. Bulletin of Science and Technology, 2015, 31(7): 106-110. (in Chinese)

【12】Yao Peng, Wang Xueqi, Wang Haiyan. Aircraft and black body infrared radiation simulation and modeling[J]. Journal of Detection & Control, 2016, 38(6): 109-114. (in Chinese)

【13】Ai Xiaofeng, Zou Xiaohai, Li Yongzhen. Bistatic scattering centres of cone-shaped targets and target length estimation[J]. Science China Information Sciences, 2012, 55(12): 2888-2898. (in Chinese)

【14】Li Ni, Lv Zhenhua, Wang Shaodan, et al. A real-time infrared radiation imaging simulation method of aircraft skin with aerodynamic heating effect[J]. Infrared Physics & Technology, 2015, 71: 533-541. (in Chinese)

引用该论文

Liu Zheng,Mao Hongxia,Dai Congming,Wei Heli. Dim and small target association based on multi-source data and multi-feature fusion[J]. Infrared and Laser Engineering, 2019, 48(5): 0526001

刘 铮,毛宏霞,戴聪明,魏合理. 基于多源数据多特征融合的弱小目标关联研究[J]. 红外与激光工程, 2019, 48(5): 0526001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF