首页 > 论文 > 激光技术 > 43卷 > 2期(pp:222-226)

一种可调谐的宽带喇曼波长转换器

A tunable broadband Raman wavelength converter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高宽带波长转换技术的响应速度, 采用高非线性光子晶体光纤, 设计了一种受激喇曼散射的可调谐全光宽带波长转换器。基于光纤中喇曼效应, 对光子晶体光纤喇曼增益谱采取高斯曲线进行拟合, 建立了喇曼波长转换器的理论模型, 并进行了仿真分析, 讨论了光纤长度对转换效率的影响。结果表明, 在符合通信系统的条件下, 实现了100nm转换带宽, 波段为1487nm~1587nm, Q因子随探测光波长变化与喇曼增益谱走势相同, 其波长转换质量最优处在喇曼增益系数最大处。该研究对未来光网络的波长转换器波长分配以及光纤长度的配置研究具有参考意义。

Abstract

In order to improve the response speed of broadband wavelength conversion technology, a tunable all-optical broadband wavelength converter based on stimulated Raman scattering (SRS) using highly nonlinear photonic crystal fiber (PCF) was designed. Based on Raman effect in optical fiber, Raman gain spectrum of photonic crystal fiber was fitted by Gaussian curve. The theoretical model of a Raman wavelength converter was established, and the effect of fiber length on conversion efficiency was discussed. The results show that 100nm conversion bandwidth is achieved under the condition of the communication system. The bandwidth is 1487nm~1587nm. Q factor changes with the wavelength of probe light and the trend of Raman gain spectrum is the same. The best wavelength conversion quality is at the maximum Raman gain coefficient. The study is of great significance to the wavelength assignment of wavelength converters and the configuration of fiber length in future optical networks.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.7510/jgjs.issn.1001-3806.2019.02.014

所属栏目:激光材料与光学元件

基金项目:国家自然科学基金资助项目(61775180)

收稿日期:2018-04-16

修改稿日期:2018-07-16

网络出版日期:--

作者单位    点击查看

巩稼民:西安邮电大学 电子工程学院, 西安 710121
任 帆:西安邮电大学 电子工程学院, 西安 710121
薛孟乐:西安邮电大学 电子工程学院, 西安 710121
侯玉洁:西安邮电大学 电子工程学院, 西安 710121
李思平:西安邮电大学 电子工程学院, 西安 710121
蔡 庆:西安邮电大学 电子工程学院, 西安 710121
丁 哲:西安邮电大学 电子工程学院, 西安 710121

联系人作者:巩稼民(gjm@xupt.edu.cn)

备注:巩稼民(1962-), 男, 博士, 教授, 现主要从事光纤通信与非线性光纤光学的研究。

【1】XU J H, LENG B, LI D, et al. All-optical wavelength conversion based on stimulated Raman scattering in optical fiber[J]. Acta Photonica Sinica, 2013, 42(9):1009-1017(in Chinese).

【2】ZHU Y X, CHEN H M. 40Gb/s optical 3R-regeneration using FWM in SOA and SPM in HNLF[J]. Acta Photonica Sinica, 2007,36(s1):49-52(in Chinese).

【3】FRIIS S M, MEJLING L, ROTTWITT K. Effects of Raman scattering and attenuation in silica fiber-based parametric frequency conversion[J]. Optics Express, 2017, 25(7):7324-7337.

【4】ZHAO Y. Equal output optical power of Raman multi-wavelength converter based on chalcogenide fiber[D]. Xi’an:Xi’an University of Posts and Telecommunications, 2015:4-37(in Chinese).

【5】XU T, SHEVCHENKO N A, LAVERY D, et al. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems.[J]. Optics Express, 2017, 25(4):3311-3326.

【6】GONG J M, SHEN Q. On effect of SRS in all-optical multiple wavelength conversion to achieve the output-power flattering[J]. Journal of Xi’an University of Posts and Telecommunications, 2013, 18(3):67-70(in Chinese).

【7】GONG J M, SHEN Y N, GUO C, et al. Tunable Raman wavelength conversion based on tellurium-based fiber[J]. Semiconductor Optoelectronics, 2017, 38(6):868-871(in Chinese).

【8】ZHANG Z X, YE Zh Q, SANG M H, et al. Wavelength conversion based on cross-phase modulation[J]. Laser Technology, 2008, 32(6):587-589(in Chinese).

【9】ZHAO B, WANG M Y, SHI W H, et al. Wavelength conversion based on cross-phase modulation of high nonlinear photonic crystal fiber[J]. Semiconductor Optoelectronics, 2014, 35(4):687-690(in Chinese).

【10】CUI L L, WANG H L, LI W, et al. Study on gain recovery time of wavelength conversion based on single-port-coupled QD-SOA[J]. Laser Technology, 2016, 40(5): 742-745(in Chinese).

【11】HUI Zh Q, ZHANG J G. All-optical format conversion non-return-to-zero to return-to-zero based on four-wave mixing in photonic crystal fiber [J]. Acta Physica Sinia, 2012, 61(1):014217(in Chin-ese).

【12】ZHAO B. Wavelength conversion based on cross-phase modulation of highly nonlinear photonic crystal fibers[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2013:10-43(in Chinese).

【13】SEMRAU D L, KILLEY R, BAYVEL P. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering[J]. Optics Express, 2017, 25(12) 13024-13034.

【14】CHEN Y F, HAN Q, YAN W Ch, et al. Magnetic-fluid-coated photonic crystal fiber and FBG for magnetic field and temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(23):2665-2668.

【15】ZHANG X D, CHEN N, NIE F K, et al. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes[J]. Laser Technology, 2018, 42(1):48-52(in Ch-inese).

【16】VILLARROEL J, GRANDPIERRE A G. On statistical effects on stimulated Raman cross-talk [J]. Journal of Physics, 2005, B53(12):2601-2612.

【17】GONG J M. Dense wavelength division multiplexing in a quartz optical fiber communication systems stimulated Raman scattering and stimulated Brillouin scattering effect [D]. Xi’an: Xi’an Jiaotong University, 1999:57-74(in Chinese).

【18】HAMMANI K, PICOZZI A, FINOT C. Extreme statistics in Raman fiber amplifiers: from experiments to analytical description[J]. Optics Communications, 2010, 284(10/11):2594-2603.

【19】GONG J M, GUO C, SHEN Y N, et al. Gain-flattened photonic crystal raman fiber amplifier[J]. Acta Photonica Sinica, 2017, 46(7):723002(in Chinese).

【20】XU J H, ZHAO Y, LENG B, et al. All-optical wavelength conversion based on stimulated Raman scattering in optical fiber[J]. Journal of Applied Optics, 2013, 34(5):882-888(in Chinese).

【21】GONG J M, MENG L H, YANG M, et al. All optical wavelength conversion for stimulated Raman scattering based on photonic crystal fiber[J]. Infrared and Laser Engineering, 2016, 45(12):117-123(in Chinese).

引用该论文

GONG Jiamin,REN Fan,XUE Mengle,HOU Yujie,LI Siping,CAI Qing,DING Zhe. A tunable broadband Raman wavelength converter[J]. Laser Technology, 2019, 43(2): 222-226

巩稼民,任 帆,薛孟乐,侯玉洁,李思平,蔡 庆,丁 哲. 一种可调谐的宽带喇曼波长转换器[J]. 激光技术, 2019, 43(2): 222-226

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF