激光技术, 2019, 43 (2): 246, 网络出版: 2019-07-10  

纳秒光纤激光诱导等离子体沉积铜的研究

Study on plasma deposition of copper induced by nanosecond fiber laser
作者单位
华中科技大学 武汉光电国家研究中心 激光与太赫兹技术功能实验室, 武汉 430074
摘要
为了实现玻璃表面的金属化, 运用激光诱导等离子体沉积技术, 选用廉价易维护且波长为1064nm的红外纳秒光纤激光和T2铜靶材, 在透明材料普通硅酸盐玻璃表面直接沉积出了金属铜, 并对其进行了光学显微镜和扫描电镜表征。结果表明, 在一定的激光能量密度范围内(沉积阈值能量密度12.50J/cm2~激光器所能达到的最大能量密度27.13J/cm2), 随着激光能量密度的增加, 沉积在玻璃表面的铜颗粒数量增加; 而在激光能量密度一定(27.13J/cm2)的条件下, 若保持激光光斑的横向和纵向搭接率一致, 当光斑搭接率不小于50%时, 由于玻璃对激光的强烈吸收, 导致铜沉积失败; 当光斑搭接率在-20%~50%变化时, 沉积在玻璃表面的铜颗粒数量呈现先增加后减小的变化趋势。激光诱导等离子体沉积技术是一种可实现透明衬底材料表面金属化的便捷技术。
Abstract
In order to achieve surface metallization on glass substrates, metallic copper was directly deposited on the surface of conventional transparent silicate glass by means of laser-induced plasma deposition technology with a T2 copper target and a cheap and easily-maintained 1064nm wavelength infrared nanosecond fiber laser. Micro-morphology of the copper deposition layer was observed by an optical microscope and a scanning electron microscope. The results show that, in the range of laser energy density from 12.50J/cm2 (deposition threshold) to 27.13J/cm2 (the maximal fluence of the laser), the deposition amount of copper particles on the glass surface increases with the increase of laser fluence. Under the condition of constant laser fluence (e.g.,27.13J/cm2) and the same horizontal and vertical spot overlaps, copper deposition process fails if the spot overlap percentage is equal to or large than 50% bcause of the strong absorption of laser by glass. And if the overlap percentage ranges from -20% to 50%, deposition amount of copper particles has a tendency of increase firstly and then decrease. Laser-induced plasma deposition technology is a facile process to realize surface metallization on transparent substrate material.

杨凯, 秦中立, 艾骏, 刘建国, 曾晓雁. 纳秒光纤激光诱导等离子体沉积铜的研究[J]. 激光技术, 2019, 43(2): 246. YANG Kai, QIN Zhongli, AI Jun, LIU Jianguo, ZENG Xiaoyan. Study on plasma deposition of copper induced by nanosecond fiber laser[J]. Laser Technology, 2019, 43(2): 246.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!