首页 > 论文 > 红外与激光工程 > 48卷 > 4期(pp:404003--1)

综合斜程传输和光束扩展影响下的大气湍流相位屏组设计

Design of atmospheric turbulence phase screen set under the influence of combined oblique propagation and beam propagation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了综合斜程传输和光束扩展影响下的相位屏组来模拟光束经大气层斜程传输后产生的波前畸变, 先利用功率谱反演法和次谐波补偿法生成垂直传输路径的相位屏, 再结合斜程大气传输理论对相位屏进行斜程修正, 得到适用于模拟斜程大气湍流影响的相位屏。通过数值分析对比了斜程相位屏与垂直路径相位屏相位结构函数的差别。结合光束扩展情况计算每个高度区间对应的波前畸变空间分布, 建立了相位屏组模型, 最后得到接收光波面各位置的相位分布。

Abstract

In this paper, the wavefront aberration was simulated by using the phase screen set under the influence of combined oblique propagation and beam propagation. First, the phase screen of the vertical transmission path was generated by the power spectrum inversion method and the subharmonic compensation method, and the oblique atmosphere propagation theory was used to correct the phase screen, then the phase screen suitable for the simulation of the influence of the oblique atmospheric turbulence was obtained. The difference of phase structure function between oblique phase screen and vertical path phase screen was compared by numerical analysis. The space distribution of wavefront distortion corresponding to each height interval was calculated, and the phase screen group model was established. Finally, the phase distribution of each position of the received light wave plane was obtained.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.1

DOI:10.3788/irla201948.0404003

基金项目:国家自然科学基金(61571446)

收稿日期:2018-11-10

修改稿日期:2018-12-20

网络出版日期:--

作者单位    点击查看

徐晨露:国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
郝士琦:国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
张 岱:国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
赵青松:国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
宛雄丰:国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037

联系人作者:徐晨露(xcl951230@126.com)

备注:徐晨露(1995-), 女, 硕士生, 主要从事星地激光通信方面的研究。

【1】Rickenstorff C, Rodrigo J A, Alieva T. Programmable simulator for beam propagation in turbulent atmosphere[J]. Optics Express, 2016, 24(9): 10000.

【2】Roddier N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180.

【3】Wang Qitao, Tong Shoufeng, Xu Youhui. Simulation and verification of atmospheric turbulence phase screen using Zernike polynomials, [J]. Infrared and Laser Engineering, 2013, 42(7): 1907-1911. (in Chinese)
王奇涛, 佟首峰, 徐友会. 采用Zernike多项式对大气湍流相位屏的仿真和验证[J]. 红外与激光工程, 2013, 42(7):1907-1911.

【4】Wei Peifeng, Liu Xinyue, Lin Xudong, et al. Time domain simulation of atmospheric turbulence in adaptive optical system test [J]. Chinese Optics, 2013, 6 (3): 371-377. (in Chinese)
卫沛锋, 刘欣悦, 林旭东,等. 自适应光学系统测试中大气湍流的时域模拟[J]. 中国光学, 2013, 6(3): 371-377.

【5】Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224.

【6】Li Yujie, Zhu Wenyue, Rao Ruizhong. Stochastic phase screen simulation of atmospheric turbulence in non-Kolmogorov [J]. Infrared and Laser Engineering, 2016, ,45(12): 1211001. (in Chinese)
李玉杰, 朱文越, 饶瑞中. 非Kolmogorov大气湍流随机相位屏模拟[J]. 红外与激光工程, 2016, 45(12): 162-169.

【7】Wu Hanling, Yan Haixing, Li Xinyang, et al. Rectangular turbulent phase screens based on the fractal characteristics of distorted phase wavefronts [J]. Acta Optica Sinica, 2009, 29(1): 114-119. (in Chinese)
吴晗玲, 严海星, 李新阳,等. 基于畸变相位波前分形特征产生矩形湍流相屏[J]. 光学学报, 2009, 29(1): 114-119.

【8】Li Bo, Wang Tingfeng, Wang Dinan, et al. Simulation of turbulence perturbation in laser atmospheric transmission [J]. Chinese Optics, 2012, 5(3): 289-295. (in Chinese)
李波, 王挺峰, 王弟男,等. 激光大气传输湍流扰动仿真技术[J]. 中国光学, 2012, 5(3): 289-295.

【9】Li Dun, Ning Yu, Wu Wuming, et al. Numerical simulation and verification of dynamic atmospheric turbulence with rotating phase screens [J]. Infrared and Laser Engineering, 2017, 46(12): 1211003. (in Chinese)
李盾, 宁禹, 吴武明,等. 旋转相位屏的动态大气湍流数值模拟和验证方法[J]. 红外与激光工程, 2017, 46(12): 1211003.

【10】Zhang Huimin, Li Xinyang. Research on numerical simulation of phase screen of atmospheric turbulence distortion[J]. Optoelectronic Engineering, 2006, 33(1): 14-19. (in Chinese)
张慧敏, 李新阳. 大气湍流畸变相位屏的数值模拟方法研究[J]. 光电工程, 2006, 33(1): 14-19.

【11】Zhang Xiaoxin, Han Kai, Fu Fuxing. The phase characteristics of the oblique propagation light field in the turbulent atmosphere [J]. High Power Laser and Particle Beams, 2013, 25(8): 1925-1929. (in Chinese)
张晓欣, 韩开, 付福兴,等. 湍流大气中斜程传输光场的相位特性[J]. 强激光与粒子束, 2013, 25(8): 1925-1929.

【12】Frehlich R. Simulation of laser propagation in a turbulent atmosphere.[J]. Applied Optics, 2000, 39(3):393-397.

【13】Coles W A, Filice J P, Frehlich R G, et al. Simulation of wave propagation in three-dimensional random media[J]. Applied Optics, 1995, 34(12): 2089-2101.

【14】Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Phase screen distribution for simulation laser propagation along an inhomogeneous atmo spheric path[J]. Acta Physica Sinica, 2009, 58(9): 6633-6639. (in Chinese)
钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布[J]. 物理学报, 2009, 58(9): 6633-6639.

【15】Chen Chunyi. Study of atmospheric influence mechanism and suppression technology in wireless optical communication [D]. Changchun: Changchun University of Science and Technology, 2009. (in Chinese)
陈纯毅. 无线光通信中的大气影响机理及抑制技术研究[D]. 长春: 长春理工大学, 2009.

引用该论文

Xu Chenlu,Hao Shiqi,Zhang Dai,Zhao Qingsong,Wan Xiongfeng. Design of atmospheric turbulence phase screen set under the influence of combined oblique propagation and beam propagation[J]. Infrared and Laser Engineering, 2019, 48(4): 0404003

徐晨露,郝士琦,张 岱,赵青松,宛雄丰. 综合斜程传输和光束扩展影响下的大气湍流相位屏组设计[J]. 红外与激光工程, 2019, 48(4): 0404003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF