首页 > 论文 > 光学 精密工程 > 27卷 > 6期(pp:1397-1404)

种子呼吸CO2浓度检测系统

CO2 concentration detection system for seed respiration

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统种子呼吸CO2浓度检测方法中检测精度低的问题, 为了满足测量需要, 提出一种采用可调谐二极管激光器吸收光谱技术的种子呼吸测量系统方案。该系统是由多次反射池结构的种子呼吸容器、分布反馈式激光器及其控制电路、光电转换及放大电路、数据采集电路、上位机软件等构成, 设计种子呼吸容器其空间体积为1.5 L, 激光器光源采用2 004 nm波段, 多次反射池光程为16 m。然后, 基于朗伯比尔定律, 通过波长调制吸收光谱技术, 利用二次谐波实时反演出种子呼吸过程中产生CO2气体的浓度。测试结果显示: 种子呼吸CO2浓度测量的稳定重复性为0.033%, CO2浓度的线性拟合度为0.999 38, CO2浓度检测极限为1.7 ppm。通过实验对糯玉米种子进行检测, 获得20 g玉米种子呼吸的变化曲线, 其12 h内变化量为2 750.5 ppm, 呼吸速率为229.2 ppm/h, 实验结果表明该系统能解决种子呼吸CO2浓度无法连续性测量、浓度检测精度低等问题。

Abstract

To address the problem of low detection accuracy in the traditional method of seed-breathing CO2 concentration measurement, a seed-breathing measurement system based on tunable diode laser absorption spectroscopic technology was proposed to meet the needs of seed-breathing CO2 concentration measurements. First, the system was designed to consist of a seed-breathing container, a distributed feedback laser and control circuit, photoelectric conversion and an amplification circuit, a data acquisition circuit, and upper computer software. The space volume of the seed breathing container was 1.5 L, the laser source was in the 2 004-nm band, and the light path of the multiple reflection cell was 16 m. Then, based on Lamberts law and wavelength modulated absorption spectroscopy, the concentration of CO2 produced during seed respiration could be retrieved in real time using second harmonics. The stable repeatability of the CO2 concentration measurement in seed respiration is 0.033%, the linear fitting degree of CO2 concentration is 0.999 38, and the detection limit of CO2 concentration is 1.7×10-6. The change curve of 20-g maize seed respiration is obtained by testing waxy maize seeds. The amount of change in waxy maize seed respiration after 12 h is 2 750.5×10-6, and the respiration rate is 229.2×10-6/h. Experimental results show that the system can solve the inability for continuous measurement of CO2 concentration in seed respiration and the low precision of concentration detection.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.1;O657.38

DOI:10.3788/ope.20192706.1397

所属栏目:生命科学仪器

基金项目:国家自然科学基金青年基金资助项目(No.31701512); 国家自然科学基金资助项目(No.61772198); 浙江省重点研发项目资助(No.2019C02013); 湖州市自然科学基金资助项目(No.2017YZ03)

收稿日期:2019-02-25

修改稿日期:2019-03-20

网络出版日期:--

作者单位    点击查看

贾良权:湖州师范学院, 浙江 湖州 313000
祁亨年:湖州师范学院, 浙江 湖州 313000
胡文军:湖州师范学院, 浙江 湖州 313000
赵光武:浙江农林大学, 浙江 杭州 311000
阚瑞峰:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033

联系人作者:贾良权(02426@zjhu.edu.cn)

备注:贾良权(1984-)男, 安徽合肥人, 博士后, 硕士生导师, 2006年获得安徽工程大学学士学位, 2015年获得中国科学院大学博士学位, 主要从事种子活力检测与农业光谱技术的研究。

【1】PERRY D A. Report of the vigour test committee, 1974—1977 [J]. Seed Science and Technology, 1978, 6(1): 159-181.

【2】黄真池, 黄上志.不破坏种子活力测定方法研究Ⅱ种子活力与呼吸速率的关系 [J]. 种子, 1998, 98(5): 3-5.
HUANG ZH CH, HUANG SH ZH. Study on the method for determining seed vigor without destroying seed vigor Ⅱ. The relationship between seed vigor and respiration rate [J].Seeds, 1998, 98(5): 3-5.(in Chinese)

【3】潘威, 杜景诚, 乔雨, 等.基于氧传感技术测定烟草种子活力的初步研究[J].种子, 2018, 37(6): 72-75.
PAN W, DU J CH, QIAO Y, et al.. Preliminary Study on Measuring Tobacco Seed Vigor Based on Oxygen Sensing Technology [J].Seeds, 2018, 37(6): 72-75.(in Chinese)

【4】芮海云, 卢仝, 丁敏, 等.运用简易呼吸测定装置测定植物种子呼吸强度的探究[J].黑龙江生态工程职业学院学报, 2009, 22(6): 52-53.
RUI H Y, LU T, DING M, et al.. A study on the measurement of respiration intensity of plant seeds by simple respiration measuring device [J].Journal of Heilongjiang Vocational College of Ecological Engineering, 2009, 22(6): 52-53.(in Chinese)

【5】李海霞, 徐久玮, 蔡明历, 等.小篮子法测定植物种子呼吸速率的方法改进[J].生物学杂志, 2015, 32(1): 100-102, 106.
LI H X, XU J W, CAI M L, et al.. Improvement of the method for determining the respiratory rate of plant seeds by small basket method [J].Journal of Biology, 2015, 32(1): 100-102, 106.(in Chinese)

【6】李春辉.化学剂浸种对油松种子呼吸速率和发芽率的影响[J].现代农业科技, 2017(6): 155, 157.
LI CH H.Effects of chemical soaking on respiration rate and germination rate of pinus tabulaeformis seeds [J].Modern Agricultural Science and Technology, 2017 (6): 155, 157.(in Chinese)

【7】季文海, 吕晓翠, 胡文泽, 等.TDLAS技术在烯烃生产过程中的多组分检测应用[J].光学 精密工程, 2018, 26(8): 1837-1845.
JI W H, LV X C, HU W Z, et al.. Application of TDLAS technology in multi-component detection in olefin production process[J].Opt. Precision Eng., 2018, 26(8): 1837-1845.(in Chinese)

【8】姜琛昱, 孙美秀, 李迎新, 等.激光光谱技术在呼吸气体分析中的发展与未来[J].中国激光, 2018, 45(2): 197-205.
JIANG C Y, SUN M X, LI Y X, et al.. Development and future of laser spectroscopy in respiratory gas analysis [J].China Laser, 2018, 45 (2): 197-205.(in Chinese)

【9】陆恒, 张刚, 张国贤, 等.基于TDLAS的二氧化碳和水汽同时检测技术研究[J].江苏科技信息, 2018, 35(5): 41-43.
LU H, ZHANG G, ZHANG G X, et al.. Research on simultaneous detection technology of carbon dioxide and water vapor based on TDLAS[J].Jiangsu Science and Technology Information, 2018, 35(5): 41-43.(in Chinese)

【10】王雪梅, 刘石.基于波长调制光谱技术的二氧化碳浓度测量[J].大气与环境光学学报, 2017, 12(5): 356-361.
WANG X M, LIU SH.Carbon dioxide concentration measurement based on wavelength modulation spectroscopy [J].Journal of Atmospheric and Environmental Optics, 2017, 12 (5): 356-361.(in Chinese)

【11】李萌, 郭金家, 叶旺全, 等.基于微型多次反射腔的TDLAS二氧化碳测量系统[J].光谱学与光谱分析, 2018, 38(3): 697-701, 707.
LI M, GUO J J, YE W Q, et al.. TDLAS carbon dioxide measurement system based on micro multiple reflector cavity [J].Spectroscopy and Spectral Analysis, 2018, 38(3): 697-701, 707.(in Chinese)

【12】张可可, 刘世萱, 陈世哲, 等.基于TDLAS的二氧化碳浓度检测系统及压强补偿研究[J].仪表技术与传感器, 2016(1): 53-55, 69.
ZHANG K K, LIU SH X, CHEN SH ZH, et al.. Carbon dioxide concentration detection system and pressure compensation based on TDLAS [J].Instrument technology and sensors, 2016(1): 53-55, 69.(in Chinese)

【13】袁松, 阚瑞峰, 何亚柏, 等.基于可调谐半导体激光光谱大气CO2监测仪[J].中国激光, 2014, 41(12): 176-181.
YU S, KAN R F, HE Y B, et al.. Atmospheric CO2 monitor based on tunable semiconductor laser spectrum [J]. China Laser, 2014, 41 (12): 176-181.(in Chinese)

【14】杨玉新, 刘海波, 张英, 等.基于可调谐激光吸收光谱的痕量CO定量检测技术[J].工业安全与环保, 2019, 45(1): 74-78.
YANG Y X, LIU H B, ZHANG Y, et al.. Quantitative detection of trace CO based on tunable laser absorption spectroscopy [J].Industrial Safety and Environmental Protection, 2019, 45(1): 74-78.(in Chinese)

【15】卢伟业, 朱晓睿, 李越胜, 等.TDLAS直接吸收法和波长调制法在线测量CO2的比较[J].红外与激光工程, 2018, 47(7): 155-160.
LU W Y, ZHU X R, LI Y SH, et al.. Comparison of on-line CO2 measurement by TDLAS direct absorption method and wavelength modulation method [J].Infrared and Laser Engineering, 2018, 47(7): 155-160.(in Chinese)

【16】张志荣, 孙鹏帅, 庞涛, 等.激光吸收光谱技术在工业生产过程及安全预警标识性气体监测中的应用[J].光学 精密工程, 2018, 26(8): 1925-1937.
ZHANG ZH R, SUN P SH, PANG T, et al.. Application of laser absorption spectroscopy in industrial production process and safety early warning marking gas monitoring [J].Opt. Precision Eng., 2018, 26(8): 1925-1937.(in Chinese)

【17】魏文, 张振华, 胡晓光.非激光在怀特池中的传播特性[J].光学仪器, 2013, 35(5): 66-70.
WEI W, ZHANG ZH H, HU X G.Propagation characteristics of non-laser in white pool [J].Optical Instruments, 2013, 35(5): 66-70.(in Chinese)

【18】穆永吉, 陈远, 余俊, 等.一种多次反射怀特池的研究与设计[J].光学技术, 2014, 40(4): 345-348.
MU Y J, CHEN Y, YU J, et al.. Research and design of a multiple reflection white pool [J].Optical Technology, 2014, 40(4): 345-348.(in Chinese)

【19】夏滑, 董凤忠, 涂郭结, 等.基于新型长光程多次反射池的CO高灵敏度检测[J].光学学报, 2010, 30(9): 2596-2601.
XIA H, DONG F ZH, TU G J, et al.. High sensitivity detection of CO based on new long optical path multiple reflector cell [J]. Journal of Optics, 2010, 30(9): 2596-2601.(in Chinese)

【20】李晗, 刘建国, 阚瑞峰, 等.波长调制光谱测量系统中的数字化相敏检测实现[J].中国激光, 2013, 40(11): 259-264.
LI H, LIU J G, KAN R F, et al.. Implementation of digital phase-sensitive detection wavelength modulation spectroscopy measurement system [J]. China Laser, 2013, 40(11): 259-264.(in Chinese)

引用该论文

JIA liang-quan,QI heng-nian,HU wen-jun,ZHAO guang-wu,KAN rui-feng. CO2 concentration detection system for seed respiration[J]. Optics and Precision Engineering, 2019, 27(6): 1397-1404

贾良权,祁亨年,胡文军,赵光武,阚瑞峰. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程, 2019, 27(6): 1397-1404

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF