首页 > 论文 > 光学 精密工程 > 27卷 > 7期(pp:1492-1499)

量子随机数高斯噪声信号发生器

Quantum random number Gaussian noise signal generator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

现有的高斯噪声信号发生器都是采用数学计算的方式生成随机数的, 这种方式不能实现真正的随机信号, 与实际噪声信号不符。本文提出基于量子随机数的高斯噪声信号发生器, 通过单光子探测器对选择路径的光子信号的探测作为随机数的来源, 实现基于真随机的高斯噪声信号发生器。将得到的随机数经过WGN高斯算法处理得到高斯噪声信号, 在FPGA中使用verilog语言实现。对产生的噪声信号进行幅度谱和功率谱分析, 结果表明产生的噪声信号幅度值在0~255之间变化, 幅度谱服从高斯分布, 噪声信号的功率谱在20 dB上下均匀波动, 服从均匀分布, 满足高斯白噪声的特性。与现有的噪声信号发生器相比, 基于量子随机数的实现方式, 其随机数来源清晰, 能够做到真正的随机性, 为实现真随机数的高斯噪声信号发生器提供了一种简易的方案。

Abstract

The existing method used to generate Gaussian noise signals is to generate random numbers through mathematical calculation. However, this method cannot achieve a true random signal nor can it match the actual noise signal. In this study, a Gaussian noise signal generator based on a quantum random number is proposed. A single-photon detector detects the photon signal of the selected path as the source of the random number and realizes the Gaussian noise signal generator based on a true random number. The random number is processed by a weighted Girvan-Newman Gaussian algorithm to obtain the Gaussian noise signal, which is implemented using the Verilog language in a field programmable gate array. The results show that the amplitude of the generated noise signal varies from 0 to 255. A statistical analysis of the amplitude spectrum obeys the Gaussian distribution. The power spectrum of the noise signal fluctuates uniformly at approximately 20 dB and follows a uniform distribution, thus satisfying the characteristics of the Gaussian white noise. Compared with existing methods based on quantum random numbers, the source of the random number is distinct in the present case, and the proposed generator can achieve real randomness. A simple scheme for realizing a true random number for a Gaussian noise signal generator is therefore presented.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O413;TN91122

DOI:10.3788/ope.20192707.1492

所属栏目:现代应用光学

基金项目:国家重点研发计划资助项目(No.2016YFB0400900); 政府间国际合作创新项目(No.2016YFE0118400); 吉林省重点研发资助计划(No.20180201026GX); 中科院青促会资助项目(No.2015171)

收稿日期:2018-12-11

修改稿日期:2019-01-29

网络出版日期:--

作者单位    点击查看

余恒炜:中国科学技术大学 微电子学院, 安徽 合肥 230026中国科学院大学 材料与光电研究中心, 吉林 长春 130033
孙晓娟:中国科学院大学 材料与光电研究中心, 吉林 长春 130033中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
王星辰:中国科学技术大学 微电子学院, 安徽 合肥 230026中国科学院大学 材料与光电研究中心, 吉林 长春 130033
蒋 科:中国科学院大学 材料与光电研究中心, 吉林 长春 130033中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
吴 忧:中国科学院大学 材料与光电研究中心, 吉林 长春 130033中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
程东碧:中国科学技术大学 微电子学院, 安徽 合肥 230026中国科学院大学 材料与光电研究中心, 吉林 长春 130033
石芝铭:中国科学院大学 材料与光电研究中心, 吉林 长春 130033中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
贾玉萍:中国科学院大学 材料与光电研究中心, 吉林 长春 130033中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
黎大兵:中国科学院大学 材料与光电研究中心, 吉林 长春 130033中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033

联系人作者:余恒炜(yhw520@mail.ustc.edu.cn)

备注:余恒炜(1992-), 男, 安徽池州人, 硕士研究生, 主要从事光电探测器及其读出电路方面的研究。

【1】GROWDEN T A, ZHANG W D, BROWN E R, et al.. Near-UV electroluminescence in unipolar-doped, bipolar-tunneling GaN/AlN heterostructures[J]. Light: Science & Applications, 2018, 7(2): 17150.

【2】BIANCO V, MEMMOLO P, LEO M, et al.. Strategies for reducing speckle noise in digital holography[J]. Light: Science & Applications, 2018, 7: 48.

【3】YUAN G H, VEZZOLI S, ALTUZARRA C, et al.. Quantum super-oscillation of a single photon[J]. Light: Science & Applications, 2016, 5(8): e16127.

【4】CASPANI L, XIONG C L, EGGLETON B J, et al.. Integrated sources of photon quantum states based on nonlinear optics[J]. Light: Science & Applications, 2017, 6(11): e17100.

【5】聂友奇. 量子随机数实验研究[D]. 合肥: 中国科学技术大学, 2017.
NIE Y Q. Experimental Study of Quantum Random Number Generation[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)

【6】秦雪陈. 混合同余法产生随机噪声的FPGA实现[J]. 电子设计工程, 2015, 23(9): 123-126.
QIN X CH. Mixed congruential method to generate random noise on FPGA[J]. Electronic Design Engineering, 2015, 23(9): 123-126. (in Chinese)

【7】申艳, 王新民, 陈后金. 基于FPGA的高斯白噪声发生器设计[J]. 现代电子技术, 2009, 32(23): 197-200.
SHEN Y, WANG X M, CHEN H J. Design of white Gaussian noise generator based on FPGA[J]. Modern Electronics Technique, 2009, 32(23): 197-200. (in Chinese)

【8】王鹏宇, 翟丽丽, 石巨峰. 基于FPGA的参数可调高斯白噪声发生器的设计[J]. 舰船电子对抗, 2013, 36(4): 113-115, 120.
WANG P Y, ZHAI L L, SHI J F. Design of Gaussian white noise generator with adjustable parameters based on FPGA[J]. Shipboard Electronic Countermeasure, 2013, 36(4): 113-115, 120. (in Chinese)

【9】骆乐, 吴长强, 林杰, 等. 基于光子计数激光雷达的时域去噪[J]. 光学 精密工程, 2018, 26(5): 1175-1180.
LUO L, WU CH Q, LIN J, et al.. Time-domain denoising based on photon-counting LiDAR[J]. Opt. Precision Eng., 2018, 26(5): 1175-1180. (in Chinese)

【10】刘启能, 刘沁. 大型LED矩形阵列光斑照度的均匀性研究[J]. 发光学报, 2018, 39(5): 699-705.
LIU Q N, LIU Q. Illumination uniformity of large LED rectangular array[J]. Chinese Journal of Luminescence, 2018, 39(5): 699-705. (in Chinese)

【11】刘明哲, 李鹏翀, 邓高强, 等. 6H-SiC衬底上AlGaN基垂直结构紫外LED的制备[J]. 发光学报, 2017, 38(6): 753-759.
LIU M ZH, LI P CH, DENG G Q, et al.. Fabrication of vertical structure ultraviolet LED on 6H-SiC substrate[J]. Chinese Journal of Luminescence, 2017, 38(6): 753-759. (in Chinese)

【12】包兴臻, 梁静秋, 梁中翥, 等. 像素分割对LED电流密度及光照度分布的影响[J]. 发光学报, 2016, 37(11): 1399-1407.
BAO X ZH, LIANG J Q, LIANG ZH ZH, et al.. Current density and irradiance distribution of light-emitting-diode-array device with divided pixels[J]. Chinese Journal of Luminescence, 2016, 37(11): 1399-1407. (in Chinese)

【13】符佳佳, 曹海城, 赵丽霞, 等. 不同封装材料的中功率GaN基LED器件老化分析[J]. 发光学报, 2016, 37(10): 1230-1236.
FU J J, CAO H CH, ZHAO L X, et al.. Degradation analysis of mid-power GaN-based LEDs with different package materials[J]. Chinese Journal of Luminescence, 2016, 37(10): 1230-1236. (in Chinese)

【14】李臻,雒超,路腾腾,等. 并行雪崩光电二极管阵列红外单光子探测系统[J]. 光学 精密工程, 2016, 24(10S): 6-11.
LI ZH, YAN CH, LU T T, et al.. Infrared single photon detection system for parallel avalanche photodiode array[J]. Opt. Precision Eng., 2016, 24(10S): 6-11. (in Chinese)

【15】何妙妙,朱磊. 一种基于FPGA的高斯白噪声信号发生器[J]. 信息通信, 2016(10): 41-42.
HE M M, ZHU L. A Gaussian white noise signal generator based on FPGA[J]. Information & Communications, 2016(10): 41-42. (in Chinese)

【16】李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. 中国光学, 2018, 11(4): 677-683.
LI B, REN Y, CHANG B K. Stability of gradient-doping GaN photocathode[J]. Chinese Optics, 2018, 11(4): 677-683. (in Chinese)

【17】张博, 张玉静. 加性高斯白噪声信道中典型信号的信噪比估计[J]. 滨州学院学报, 2015, 31(2): 69-72.
ZHANG B, ZHANG Y J. Signal-noise ratio(SNR) estimation of typical signals over AWGN channel[J]. Journal of Binzhou University, 2015, 31(2): 69-72. (in Chinese)

【18】朱枫, 张葆, 李贤涛, 等. 跟踪微分器在陀螺信号去噪方面的应用[J]. Information & Communications, 2017, 10(3): 355-362.
ZHU F, ZHANG B, LI X T, et al.. Application of tracking differentiator to gyro signal denoising[J]. Chinese Optics, 2017, 10(3): 355-362. (in Chinese)

【19】季志博, 王辉, 王磊, 等. 一种大功率低噪声的智能可调LED驱动设计方法[J]. 液晶与显示, 2018, 33(9): 778-786.
JI ZH B, WANG H, WANG L, et al.. Design method for high power and low noise intelligent adjustable constant current source[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 778-786. (in Chinese)

【20】夏润秋, 刘洋. 基于FPGA的PCI总线红外图像采集系统设计[J]. 液晶与显示, 2018,33(9): 772-777.
XIA R Q, LIU Y. Design and implementation of PCI bus infrared image acquisition system based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 772-777. (in Chinese)

引用该论文

YU Heng-wei,SUN Xiao-juan,WANG Xing-chen,JIANG Ke,WU-You,CHENG Dong-bi,SHI Zhi-ming,JIA Yu-ping,LI Da-bing. Quantum random number Gaussian noise signal generator[J]. Optics and Precision Engineering, 2019, 27(7): 1492-1499

余恒炜,孙晓娟,王星辰,蒋 科,吴 忧,程东碧,石芝铭,贾玉萍,黎大兵. 量子随机数高斯噪声信号发生器[J]. 光学 精密工程, 2019, 27(7): 1492-1499

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF