首页 > 论文 > 发光学报 > 40卷 > 9期(pp:1096-1101)

Ag-SiO2纳米结构中的法诺共振

Fano Resonances in Ag-Air-SiO2 Nanostructure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用FDTD研究了Ag-SiO2纳米结构的法诺共振。mj(j=2,3)模的共振峰随银膜水平长度l的增长而红移。 法诺共振与银-空气、SiO2周期结构和SiO2有关。随着SiO2横向长度L的增加,法诺现象越来越明显。此外, 法诺共振还与银膜的介电常数(实部的负值-ε′m)密切相关。在非周期性Ag-空气-氧化硅结构中, 当-ε′m=4 000和-ε′m=6 000时, 可以观察到明显的法诺共振。

Abstract

Fano resonances in Ag-Air-SiO2 nanostructure were investigated by Finite-difference time-domain (FDTD). It could be observed a redshift with the growth of horizontal length l of silver film for the resonance peaks of the modes mj(j=2, 3). Fano resonance was related with the Ag-Air-SiO2 periodic structure and SiO2. The modes mj (j=2,3) presented a redshift and the Fano was becoming more and more obvious with the increment of transverse length L of SiO2. In addition, the Fano resonances were also closely related with the permittivity (negative value of the real part) of the silver film. The Fano resonances could be obtained when -ε′m=4 000 and -ε′m=6 000 in the aperiodic Ag-Air-SiO2 structure.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O402

DOI:10.3788/fgxb20194009.1096

所属栏目:材料合成及性能

基金项目:国家自然科学基金(51571088)资助项目

收稿日期:2018-12-18

修改稿日期:2019-02-22

网络出版日期:--

作者单位    点击查看

李 沭:湖南大学 物理与电子学院, 湖南 长沙 410082
刘晃清:湖南大学 物理与电子学院, 湖南 长沙 410082
崇桂书:湖南大学 物理与电子学院, 湖南 长沙 410082
陈曙光:湖南大学 物理与电子学院, 湖南 长沙 410082
翟 翔:湖南大学 物理与电子学院, 湖南 长沙 410082
肖时芳:湖南大学 物理与电子学院, 湖南 长沙 410082
邹 阳:湖南大学 物理与电子学院, 湖南 长沙 410082长沙市第一铁路中学, 湖南 长沙 410001

联系人作者:李沭(1746531306@qq.com)

备注:李沭(1999-), 男, 湖南邵阳人, 在读本科生, 主要从事等离子光学的研究。

【1】ZHANG J X,ZHANG L D,XU W. Surface plasmon polaritons: physics and applications [J]. J. Phys. D: Appl. Phys., 2012,45(11):113001-1-19.

【2】MELENTEV G A,SHALYGIN V A,FIRSOV D A,et al.. Surface plasmon-phonon polaritons in GaAs [J]. J. Phys.:Conf. Ser., 2017,917(6):062038-1-5.

【3】LIANG H W,RUAN S C,ZHANG M,et al.. Characteristics of modified surface plasmon polaritons on double-coated metal nanofilms [J]. Laser Phys. Lett., 2014,11(11):115003-1-5.

【4】DIN R U,BADSHAH F,AHMAD I,et al.. Tunable surface plasmon polaritons at the surfaces of nanocomposite media [J]. EPL, 2018,122(1):17001.

【5】NOUAL A,AKJOUJ A,PENNEC Y,et al.. Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths [J]. New J. Phys., 2009,11(10):103020-1-19.

【6】IM S J,HO G S. Plasmonic amplification and suppression in nanowaveguide coupled to gain-assisted high-quality plasmon resonances [J]. Laser Phys. Lett., 2015,12(4):045902.

【7】OTSUJI T,POPOV V,RYZHII V. Active graphene plasmonics for terahertz device applications [J]. J. Phys. D: Appl. Phys., 2014,47(9):094006.

【8】VYSHNEVYY A A,FEDYANIN D Y. Noise reduction in plasmonic amplifiers [J]. Appl. Phys. Express, 2018,11(6):062002-1-4.

【9】CAO L D,ZHANG Y. Light controlled surface plasmon polaritons switch based on a gradient metal grating [J]. Opt. Commun., 2018,424:103-106.

【10】APOSTOLOVA T,OBRESHKOV B D,IONIN A A,et al.. Ultrafast photoionization and excitation of surface-plasmon-polaritons on diamond surfaces [J]. Appl. Surf. Sci., 2018,427:334-343.

【11】OLIVARES J A,GALVN-MIYOSHI J M,GARCA-VALENZUELA A,et al.. Fano-type resonances in the reflectance spectra from dense colloidal films [J]. Opt. Commun., 2015,356:175-181.

【12】SADEGHI S,Hamidi S M. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance [J]. J. Magn. Magn. Mater., 2018,451:305-310.

【13】REENA R,KALRA Y,KUMAR A. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials [J]. Superlattices Microstruct., 2018,118:205-212.

【14】YANG W X,MA W H,YANG L,et al.. Phase control of group velocity via Fano-type interference in a triple semiconductor quantum well [J]. Opt. Commun., 2014,324:221-226.

【15】DOTAN I E,SCHEUER J. Fano resonances in vertically and horizontally coupled micro-resonators [J]. Opt. Commun., 2012,285(16):3475-3482.

【16】ZHENG G G,ZOU X J,CHEN Y Y,et al.. Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications [J]. Opt. Mater., 2017,66:171-178.

【17】PANARO S,DE ANGELIS F,TOMA A. Dark and bright mode hybridization:from electric to magnetic Fano resonances [J]. Opt. Lasers Eng., 2016,76:64-69.

【18】CAO M Y,WANG H F,LI L. Dynamically adjusting plasmon-induced transparency and slow light based on graphene meta-surface by bright-dark mode coupling [J]. Phys. Lett. A, 2018,382(30):1978-1981.

【19】PANG S F,HUO Y P,XIE Y,et al.. Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor [J]. Opt. Commun., 2016,381:409-413.

【20】COLLABORATION C M S,CHATRCHYAN S,KHACHATRYAN V,et al.. Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS [J]. Phys. Lett. B, 2011,704(3):123-142.

【21】SNDERGAARD T,BOZHEVOLNYI S I. Strip and gap plasmon polariton optical resonators [J]. Phys. Stattus Solidi (B),2008,245(1):9-19.

【22】LI S,XIAO S F,ZHAI X,et al.. Investigation of surface plasmon resonance in the rectangular cavity of Ag-Si-SiO2 [J]. Plasmonics, 2018,13(6):2313-2318.

【23】LI S,LIU H Q,LIU L H,et al.. Effect of silver film thickness on the surface plasma resonance in the rectangular Ag-Si-SiO2 cavity [J]. J. Phys. Commun., 2018,2(5):055024-1-10.

【24】向东. 亚波长金属光栅与等离子波导的光传输特性研究 [D]. 长沙:湖南大学, 2012:5.
XIANG D. Research on Optical Transmission Characteristics of Subwavelength Metallic Gratings and Plasmonic Waveguedes [D]. Changsha:Hunan University, 2012:5. (in Chinese)

【25】钟顺时,钮茂德. 电磁场理论基础 [M]. 西安:西安电子科技大学出版社, 1995:198.
ZHONG S S,NIU M D. Theoretical Basis of Electromagnetic Field [M]. Xian:Xidian University Press, 1995:198. (in Chinese)

【26】LI H J,WANG L L,ZHANG H,et al.. Graphene-based mid-infrared,tunable,electrically controlled plasmonic filter [J]. Appl. Phys. Express, 2014,7(2):024301-1-4.

【27】SHARMA N,JOY A,MISHRA A K,et al.. Fuchs Sondheimer-Drude Lorentz model and Drude model in the study of SPR based optical sensors:a theoretical study [J]. Opt. Commun., 2015,357:120-126.

【28】GMEZ-AGUILAR J F. Novel analytical solutions of the fractional Drude model [J]. Optik, 2018,168:728-740.

【29】GERALDO V,SCALVI L V A,LISBOA-FILHO P N,et al.. Drudes model calculation rule on electrical transport in Sb-doped SnO2 thin films,deposited via sol-gel [J]. J. Phys. Chem. Solids, 2006,67(7):1410-1415.

【30】JIANG S M,XIE Q Y,WU D J. Plasmon-exciton induced transparency in plexcitonic Ag-CuCl-coated nanowires and associated arrays [J]. Appl. Phys. B, 2015,119(2):355-361.

引用该论文

LI Shu,LIU Huang-qing,CHONG Gui-shu,CHEN Shu-guang,ZHAI Xiang,XIAO Shi-fang,ZOU Yang. Fano Resonances in Ag-Air-SiO2 Nanostructure[J]. Chinese Journal of Luminescence, 2019, 40(9): 1096-1101

李 沭,刘晃清,崇桂书,陈曙光,翟 翔,肖时芳,邹 阳. Ag-SiO2纳米结构中的法诺共振[J]. 发光学报, 2019, 40(9): 1096-1101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF