光谱学与光谱分析, 2020, 40 (3): 720, 网络出版: 2020-03-25  

基于成像差分吸收光谱技术探测合肥市大气边界层NO2斜柱浓度分布研究

Study on the Distribution of NO2 Slant Column Density in Atmospheric Boundary Layer of Hefei City Based on Imaging Differential Absorption Spectroscopy
作者单位
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361021
摘要
近年来, 中国经济发展迅速, 工业化程度越来越高, 大气环境污染问题加剧, 严重影响人民的日常生活, 因此对大气污染物的实时监测研究尤为重要。 城市边界层大气中各类污染源排放的相互作用, 使得其污染问题复杂多变, 特别是在重污染过程中污染物在大气中的垂直分布和变化情况问题。 成像差分吸收光谱(I-DOAS)技术用于对污染物空间分布的探测, 国内外对该技术的研究主要基于地基扫描、 机载和星载平台, 因其具有长距离、 多组分、 高分辨同时连续实时观测的特点, 观测范围可从小尺度逐渐向大区域拓展, 可为分析大气环境现状提供重要数据支撑。 地基成像差分吸收光谱技术一般用于对某一污染源的探测, 主要研究其对城市大气边界层污染物分布的探测方法, 其中介绍了基于比尔-朗伯定律的差分吸收光谱(DOAS)原理, 分析了基于“推扫”方式的成像系统的成像原理, 并且以大气中常见污染物NO2为例, 2018年6月12日在合肥市科学岛开展对边界层大气NO2的成像遥测实验, 将多芯光纤束前端与紫外镜头耦合, 后端连接光谱仪狭缝, 紫外镜头搭载于二维转台电机上, 设置二维旋转电机合适的仰角, 水平方向上从0°旋转至90°, 观测区域中主要包括郊区, 电厂区和城市区三个典型区域。 选择天顶太阳光谱作为参考谱, 将测量光谱、 参考谱进行相应多通道光谱合并及提取, 每采集一次可获得相对应的38条光谱。 使用DOAS反演方法对所有测量光谱进行数据反演, 得到38×90组NO2的差分斜柱浓度(DSCD), 并根据观测角度的几何模型, 将浓度信息与空间维上的像元相匹配, 按照扫描方向进行依次插值重构, 扣除复杂背景后, 获得合肥市边界层NO2差分斜柱浓度的二维分布图像, 并且与当天同时进行实验的MAX-DOAS观测数据作对比, 两者在郊区、 电厂区和城市区的相关系数分别为0.86, 0.87和0.83, 结果表明该系统能够有效获取城市边界层大气污染物浓度分布信息。
Abstract
In recent years, China’s economy has developed rapidly, industrialization has become higher and higher, and atmospheric pollution has intensified, seriously affecting people’s daily lives. Therefore, real-time monitoring and research on atmospheric pollutants is particularly important. The interaction of various pollution sources in the atmosphere of the urban boundary layer makes the pollution problem complex and variable, especially the vertical distribution and change of pollutants in the atmosphere during heavy pollution. Imaging differential absorption spectroscopy (I-DOAS) is used to detect the spatial distribution of pollutants. The research at home and abroad is based on ground-based scanning, airborne and space-borne platforms. Because of its long-distance, multi-component, high-resolution and continuous real-time observation, the observation range can be extended from small scale to large area, which can provide important data support for analyzing the current situation of the atmospheric environment. Ground-based imaging differential absorption spectroscopy is generally used to detect a certain pollution source. This paper mainly studies its detection method for urban atmospheric boundary layer pollutant distribution. It introduces the principle of differential absorption spectroscopy (DOAS) based on Beer-Lambert law, and introduces the imaging principle of imaging system based on “push-broom”. Taking the common pollutant NO2 in the atmosphere as an example, on June 12, 2018, the imaging telemetry experiment of NO2 in the boundary layer was carried out in Science Island of Hefei City. The front end of the multi-core fiber bundle was coupled with the ultraviolet lens, and the back end was connected to the slit of the spectrometer. The ultraviolet lens was mounted on the two-dimensional rotating motor. Set the appropriate elevation angle of the two-dimensional rotating electric machine, and rotated it from 0° to 90° in the horizontal direction. The observation area included the suburb, power plant area and urban area. The zenith solar spectrum was selected as the reference spectrum, and the corresponding multi-channel spectra were combined and extracted for the measured spectrum and the reference spectrum. 38 spectra were obtained for each acquisition. Data inversion of all measured spectra was performed using the DOAS inversion method to obtain the differential slant column density (DSCD) of 38×90 NO2, and the density information was matched with the pixels on the spatial dimension according to the geometric model of the observation angle. After deducting the complex background, the two-dimensional distribution images of the NO2 differential slant column density in the boundary layer of Hefei City were obtained, according to the scanning direction. Compared with the MAX-DOAS data observed at the same time, the correlation coefficients of the two in the suburbs, power plant area and urban area were 0.86, 0.87 and 0.83, respectively. The results showed that the system can effectively obtain the distribution information of atmospheric pollutant concentration in urban boundary layer.

吴子扬, 谢品华, 徐晋, 李昂, 张强, 胡肇焜, 李晓梅, 田鑫. 基于成像差分吸收光谱技术探测合肥市大气边界层NO2斜柱浓度分布研究[J]. 光谱学与光谱分析, 2020, 40(3): 720. WU Zi-yang, XIE Pin-hua, XU Jin, LI Ang, ZHANG Qiang, HU Zhao-kun, LI Xiao-mei, TIAN Xin. Study on the Distribution of NO2 Slant Column Density in Atmospheric Boundary Layer of Hefei City Based on Imaging Differential Absorption Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 720.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!