首页 > 论文 > 光学 精密工程 > 28卷 > 1期(pp:69-79)

透射共轴式光声消化内窥成像系统

Transmissive coaxial photoacoustic endoscopic imaging system for digestive tract

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光声成像作为一种既能提供光学高对比度又能实现声学大成像深度的新兴医学影像技术, 可通过对肿瘤滋养血管的三维成像, 为癌症的早期诊断提供一种全新的高灵敏检测方法。本文针对消化道肿瘤的临床成像需求, 提出了一种内部光激发、外部声探测的透射共轴式光声消化道内窥成像系统, 并通过仿体与离体生物组织的成像实验, 与现有的反射非共轴式光声内窥成像系统的成像性能进行了对比。实验结果表明, 在仿体样品中, 透射共轴式光声内窥成像系统的信噪比相对反射非共轴式系统最高提高了43.3 dB, 成像深度增大了28.4%; 而离体生物组织中, 在10.7 mm深处, 其信噪比也提高了9.7 dB。实验验证了本设计有效提高了光声信号的探测灵敏度, 使该系统相较现有反射式系统具备更优的成像信噪比和成像深度, 为光声消化道内窥技术推向临床提供了一种具有重要应用潜力的实施方法。

Abstract

Photoacoustic imaging is an emerging medical imaging technique combining the high contrast of optical imaging and the superior penetration depth of ultrasound imaging. It can provide detailed three-dimensional images of the feeding vessels of tumors, which is essential for the early diagnosis of cancer. In this study, we developed a transmissive coaxial photoacoustic digestive tract endoscopic imaging system using internal optical illumination and external ultrasonic detection. The phantom imaging results indicated that the transmissive system has a much better performance than the reflective non-coaxial system with a 43.3 dB higher Signal-to-Noise Ratio (SNR) and 28.4% better imaging depth. Ex vivo imaging results indicated that the transmissive system has a 9.7 dB higher SNR at a depth of 10.7 mm compared with the reflective system. The transmissive coaxial photoacoustic endoscopic imaging system, which exhibited a higher SNR and better imaging depth than the reflective system, shows that this design improves the detection sensitivity effectively. The significant improvements suggest that the developed photoacoustic endoscopy has great potential for translation into a broad range of clinical applications in gastroenterology.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:Q334;Q631

DOI:10.3788/ope.20202801.0069

所属栏目:现代应用光学

基金项目:深圳市科技计划项目(No.JCYJ20160608214524052); 中国科学院-威高研究发展计划攻关项目(中科院威高计划[2017]011号); 广州大学科研能力提升计划项目(No.2018A001)

收稿日期:2019-07-25

修改稿日期:2019-08-19

网络出版日期:--

作者单位    点击查看

王柏权:中国科学院 深圳先进技术研究院 生物医学光学与分子影像研究室, 广东 深圳 518055广州大学 机械与电气工程学院, 广东 广州 510006
陈宁波:中国科学院 深圳先进技术研究院 生物医学光学与分子影像研究室, 广东 深圳 518055
张建辉:广州大学 机械与电气工程学院, 广东 广州 510006
龚小竞:中国科学院 深圳先进技术研究院 生物医学光学与分子影像研究室, 广东 深圳 518055

联系人作者:王柏权(1205173349@qq.com)

备注:王柏权(1994-), 男, 广东湛江人, 博士研究生, 主要从事光声内窥成像系统、光声光谱成像系统设计等方面的研究。

【1】MASCAGNI D, CORBELLINI L, URCIUOLI P, et al.. Endoluminal ultrasound for early detection of local recurrence of rectal cancer[J]. British Journal of Surgery, 1989, 76(11): 1176-1180.

【2】陈万青, 李贺, 孙可欣, 等. 2014年中国恶性肿瘤发病和死亡分析[J]. 中华肿瘤杂志, 2018, 40(1): 5-13.
CHEN W Q, LI H, SUN K X, et al.. Report of cancer incidence and mortality in china[J]. Chinese Journal of Oncology, 2018, 40(1): 5-13. (in Chinese)

【3】李春海, 李克勤. 肿瘤微血管生成的机制与肿瘤侵袭和转移[J]. 中华肿瘤杂志, 2000, 22(3):181-183.
LI CH H, LI K Q. The mechanism of tumor microvessel and tumor invasion and metastasis [J]. Chinese Journal of Oncology, 2000, 22(3): 181-183. (in Chinese)

【4】MOTOFEI I G. Biology of cancer; from cellular cancerogenesis to supracellular evolution of malignant phenotype[J]. Cancer Investigation, 2018, 36(5): 309-317.

【5】PEERY A F, CAO H Y, DOMINIK R, et al.. Variable reliability of endoscopic findings with white-light and narrow-band imaging for patients with suspected eosinophilic esophagitis[J]. Clinical Gastroenterology and Hepatology, 2011, 9(6): 475-480.

【6】SINGH R. White light endoscopy, narrow band imaging and chromoendoscopy with magnification in diagnosing colorectal neoplasia[J]. World Journal of Gastrointestinal Endoscopy, 2009, 1(1): 45.

【7】HARINGSMA J, TYTGAT G N J, YANO H, et al.. Autofluorescence endoscopy: Feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology[J]. Gastrointestinal Endoscopy, 2001, 53(6): 642-650.

【8】LAM S, MACAULAY C, HUNG J, et al.. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device[J]. The Journal of Thoracic and Cardiovascular Surgery, 1993, 105(6): 1035-1040.

【9】KATO M, KAISE M, YONEZAWA J, et al.. Magnifying endoscopy with narrow-band imaging achieves superior accuracy in the differential diagnosis of superficial gastric lesions identified with white-light endoscopy: a prospective study[J]. Gastrointestinal Endoscopy, 2010, 72(3): 523-529.

【10】EZOE Y, MUTO M, UEDO N, et al.. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer[J]. Gastroenterology, 2011, 141(6): 2017-2025.e3.

【11】LI Y, JING J, QU Y Q, et al.. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging[J]. Biomedical Optics Express, 2017, 8(2): 1036-1044.

【12】LEE H C, AHSEN O O, LIANG K C, et al.. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett''s esophagus (with video)[J]. Gastrointestinal Endoscopy, 2017, 86(3): 476-484.e3.

【13】YAQOOB Z, WU J G, MCDOWELL E J, et al.. Methods and application areas of endoscopic optical coherence tomography[J]. Journal of Biomedical Optics, 2006, 11(6): 063001.

【14】HAREWOOD G, LEVY M, CLAIN J. Assessment of clinical impact of endoscopic ultrasound on rectal cancer[J]. Gastrointestinal Endoscopy, 2004, 59(5): P218.

【15】KELLY S. A systematic review of the staging performance of endoscopic ultrasound in gastro-oesophageal carcinoma[J]. Gut, 2001, 49(4): 534-539.

【16】KLAPMAN J B, LOGRONO R, DYE C E, et al.. Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration[J]. The American Journal of Gastroenterology, 2003, 98(6): 1289-1294.

【17】WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.

【18】LIU W, YAO J J. Photoacoustic microscopy: principles and biomedical applications[J]. Biomedical Engineering Letters, 2018, 8(2): 203-213.

【19】LI M C, TANG Y Q, YAO J J. Photoacoustic tomography of blood oxygenation: A mini review[J]. Photoacoustics, 2018, 10: 65-73.

【20】YAO J J, WANG L D, YANG J M, et al.. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 2015, 12(5): 407-410.

【21】林日强, 冷吉, 陈敬钦, 等. 面向临床应用的光声成像技术[J]. 中国医疗设备, 2018, 33(1): 1-5.
LIN R Q, LENG J, CHEN J Q, et al.. Photoacoustic imaging technology for clinical applications[J]. China Medical Devices, 2018, 33(1): 1-5. (in Chinese)

【22】YANG J M, LI C Y, CHEN R M, et al.. Optical-resolution photoacoustic endomicroscopy in vivo[J]. Biomedical Optics Express, 2015, 6(3): 918-932.

【23】QU Y, LI C Y, SHI J H. Transvaginal fast-scanning optical-resolution photoacoustic endoscopy[J]. Journal of Biomedical Optics, 2018, 23(12): 121617.

【24】CAO Y C, KOLE A, HUI J, et al.. Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography[J]. Scientific Reports, 2018, 8: 2400.

【25】HUI J, CAO Y C, ZHANG Y, et al.. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second[J]. Scientific Reports, 2017, 7: 1417.

【26】CAO Y C, HUI J, KOLE A, et al.. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design[J]. Scientific Reports, 2016, 6: 25236.

【27】LIU N, YANG S H, XING D. Photoacoustic and hyperspectral dual-modality endoscope[J]. Optics Letters, 2018, 43(1): 138-141.

【28】WANG P P, CHEN Z J, YANG F, et al.. Intravascular tri-modality system: Combined ultrasound, photoacoustic, and elasticity imaging[J]. Applied Physics Letters, 2018, 113(25): 253701.

【29】JI X R, XIONG K D, YANG S H, et al.. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer[J]. Optics Express, 2015, 23(7): 9130-9136.

【30】LI Y, LIN R Q, LIU C B, et al.. Inside Cover: In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter (J. Biophotonics 10/2018)[J]. Journal of Biophotonics, 2018, 11(10): e201870164.

【31】LI Y, GONG X J, LIU C B, et al.. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter[J]. Journal of Biomedical Optics, 2015, 20(6): 065006.

【32】YANG J M, FAVAZZA C, YAO J J, et al.. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus[J]. PLoS One, 2015, 10(4): e0120269.

【33】LI X W, XIONG K D, YANG S H. Large-depth-of-field optical-resolution colorectal photoacoustic endoscope[J]. Applied Physics Letters, 2019, 114(16): 163703.

【34】LI M C, LAN B X, LIU W, et al.. Internal-illumination photoacoustic computed tomography[J]. Journal of Biomedical Optics, 2018, 23(3): 1030506.

【35】LIN Y P, LI Z F, LI Z R, et al.. Real-time photoacoustic and ultrasonic dual-modality imaging system for early gastric cancer: Phantom and ex vivo studies[J]. Optics Communications, 2018, 426: 519-525.

【36】YANG J M, MASLOV K, YANG H C, et al.. Endoscopic photoacoustic microscopy[J]. SPIE, 2009, 7177: 71770N.

【37】KIRILLIN M, PEREKATOVA V, TURCHIN I, et al.. Fluence compensation in raster-scan optoacoustic angiography[J]. Photoacoustics, 2017, 8: 59-67.

【38】骆清铭, 张镇西. 生物医学光子学[M]. 北京: 人民卫生出版社, 2018.
LUO Q M, ZHANG ZH X. Biomedical Photonics[M]. Beijing: People''s Medical Publishing House, 2018. (in Chinese)

引用该论文

WANG Bo-quan,CHEN Ning-bo,ZHANG Jian-hui,GONG Xiao-jing. Transmissive coaxial photoacoustic endoscopic imaging system for digestive tract[J]. Optics and Precision Engineering, 2020, 28(1): 69-79

王柏权,陈宁波,张建辉,龚小竞. 透射共轴式光声消化内窥成像系统[J]. 光学 精密工程, 2020, 28(1): 69-79

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF