光学 精密工程, 2020, 28 (2): 390, 网络出版: 2020-05-27   

压电陶瓷驱动的长行程快刀伺服机构设计

Design of piezo-actuated long-stroke fast tool servo mechanism
作者单位
山东大学 机械工程学院 高效洁净机械制造教育部重点实验室, 山东 济南 250061
摘要
压电陶瓷驱动的快刀伺服技术是加工光学自由曲面等复杂曲面的有效方法。为了突破压电陶瓷驱动快刀伺服机构的行程局限, 本文采用二级杠杆放大机构, 设计了一种压电陶瓷驱动的长行程快刀伺服机构, 实现了快刀伺服机构的长行程输出性能并消除了机构的寄生位移。基于伪刚体模型和拉格朗日原理对机构进行了动力学建模, 综合行程和固有频率性能优化了机构参数并进行了有限元仿真和实验验证。机构等效刚度和固有频率的理论模型和有限元仿真结果误差分别为6.4%和1.6%, 验证了理论模型的有效性。实验结果进一步表明, 所设计的快刀伺服机构可实现100 μm的输出行程同时具有730 Hz的固有频率, 验证了所设计机构用于快刀伺服加工的有效性。系统的闭环跟踪实验也验证了系统良好的跟踪性能。
Abstract
Piezo-actuated Fast Tool Servo(FTS) technology is apromising method for processing complex surfaces such as optical free-form surfaces. To break through the stroke limitation of the piezo-actuated FTS mechanisms, a piezo-actuated long-stroke FTS mechanism was designed with a two-stage lever amplifying mechanism in the present paper; this effectively improved the long-stroke output performances of FTS mechanisms and eliminated parasitic displacement. The dynamic model of the mechanism was discussed based on the pseudo-rigid body model and Lagrangian principle. The mechanism parameters were optimized by synthesizing the stroke as well as the natural frequency performance; Finite Element Analysis(FEA) and experimental verification were also carried out. The errors of equivalent stiffness and the natural frequency of the mechanism between the theoretical model and FEA are 6.4% and 1.6%, respectively, validating the theoretical model. The experimental results show that the designed FTS mechanism can achieve a 100-μm output stroke and 730 Hz natural frequency, which agrees well with the analysis and simulations. The closed-loop tracking experiments of the designed system are also given, demonstrating the design's adequatetracking performance.

闫鹏, 李金银. 压电陶瓷驱动的长行程快刀伺服机构设计[J]. 光学 精密工程, 2020, 28(2): 390. YAN Peng, LI Jin-yin. Design of piezo-actuated long-stroke fast tool servo mechanism[J]. Optics and Precision Engineering, 2020, 28(2): 390.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!