光学 精密工程, 2020, 28 (2): 398, 网络出版: 2020-05-27   

压电精密驱动柔性微夹钳设计

Design of flexure micro-gripper precision-driven by piezoceramics
作者单位
江西理工大学 能源与机械工程学院, 江西 南昌 330013
摘要
为了实现对微纳尺度下物件的精密夹持, 建立了柔性微夹钳系统。并对该系统柔性夹钳设计、运动学、动力学和控制方法等进行研究。首先, 利用柔性铰链设计方法设计了柔性微夹钳, 利用伪刚体法建立了机械的伪刚体模型。接着, 以伪刚体模型法建立了系统的运动学模型, 即机械放大比和输入刚度等数学模型。然后, 利用拉格朗日方法建立了系统的动力学方程, 得出系统的自然振动频率。最后, 通过ANSYS有限元方法对系统建立的模型进行了仿真分析和验证, 此外, 利用PID控制算法对微夹钳系统进行实验控制。实验结果表明: 跟踪控制结果误差为2.4%; 放大比为9.12倍。基本满足微纳尺度下的微夹持工作, 其工作精度可达微米级别甚至纳米级别, 符合设计要求。
Abstract
A flexible micro-gripper system was developed to realize the precision clamping of micro-or Nano-sized objects. The design, kinematics, dynamics, and control methods of the flexible micro-gripper were studied. First, a flexible micro-gripper was designed by using a flexure hinge design method, and a Pseudo Rigid Body (PRB) model was established by using a PRB method. Moreover, the kinematic models of the system, for example, the mechanical amplification ratio and input stiffness, were established using the PRB model. Furthermore, the dynamic equation of the system was established by the Lagrange method, and the natural vibration frequencies of the system were obtained. Finally, the ANSYS finite element method was used to simulate and verify the model of the system. Additionally, a PID control algorithm was used to control the micro-gripping system. The experimental results show that the tracking control error is 2.4%, and the magnification ratio is 9.12. The system performs the micro-clamping function on the micro-or Nano-scale, and its total precision can reach the micron level or Nano-level. The micro-gripper meets the design requirements in several studies.

吴志刚, 陈敏. 压电精密驱动柔性微夹钳设计[J]. 光学 精密工程, 2020, 28(2): 398. WU Zhi-gang, CHEN Min. Design of flexure micro-gripper precision-driven by piezoceramics[J]. Optics and Precision Engineering, 2020, 28(2): 398.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!