首页 > 论文 > 红外技术 > 42卷 > 4期(pp:340-347)

一种基于双通道 CMOS相机的低照度动态场景 HDR融合方法

A Dynamic Scene HDR Fusion Method Based on Dual-channel Low-light-level CMOS Camera

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高动态范围成像技术能够全面有效反映场景信息,有利于在高动态范围场景下获得高质量的成像。但当前常用的基于单台相机的多次曝光融合方法在动态场景下易出现“鬼影”问题,基于多个传感器同时曝光的系统复杂且价格昂贵,基于单幅低动态范围图像的拓展方法易丢失欠曝光或过曝光区域的细节信息,且多用于较好的照明条件。针对低照度动态场景成像,研究了一种基于双通道低照度 CMOS相机的高动态范围图像融合方法,对双通道 CMOS相机采集低照度动态场景两幅不同曝光图像,依据累计直方图拓展原则分别进行动态范围拓展,并采用像素级融合方法对动态范围拓展的序列图像进行融合。实验表明,动态范围拓展融合方法可满足低照度动态场景下获取高动态范围图像的应用要求,获得更佳的成像质量。

Abstract

High dynamic range imaging technology can reflect scene information comprehensively and effectively, which is beneficial for obtaining higher imaging qualities in high dynamic range scenes. However, the classic high dynamic range image fusion method of using a single camera through multiple-exposure fusion tends to result in the “ghost” problem in a dynamic scene, whereas the method of using multiple sensors in a simultaneous exposure system is complicated and expensive. Meanwhile, an extension method based on a single low dynamic range image loses details easily in underexposed or overexposed areas. These methods are often used under better lighting conditions. Hence, a high dynamic range image fusion method based on a dual-channel low-light-level (L3) CMOS camera is proposed for low illumination dynamic scenes. First, an image acquisition platform built using a dual-channel L3 CMOS camera is used to collect two images with different exposures for low illumination dynamic scenes. Based on the accumulative histogram, the principle of dynamic range extension is established, and the two images collected by the system are extended. Finally, the pixel level fusion method is used to fuse the sequence images after the dynamic range extension. The results show that the method of dynamic range extension fusion can yield high dynamic range images under L3 dynamic scenes as well as better imaging quality.

中国激光微信矩阵
补充资料

中图分类号:TP391

所属栏目:图像处理与仿真

基金项目:微光夜视技术重点实验室基金(J20160101)。

收稿日期:2019-10-31

修改稿日期:2020-03-27

网络出版日期:--

作者单位    点击查看

贺理:北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 10008191216部队,辽宁葫芦岛 125000
陈果:北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081
郭宏:北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081
金伟其:北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081

联系人作者:金伟其(jinwq@bit.edu.cn)

备注:贺理(1986-),男,工程师,硕士研究生,主要研究方向为光电成像技术。 E-mail:721400850@qq.com。

【1】章卫祥, 周秉锋. 一个稳健的用于HDR图像的相机响应函数标定算法[J]. 计算机学报, 2006, 29(4): 658-663. ZHANG Weixiang, ZHOU Bingfeng. A robust HDR image calibration algorithm for camera response function[J]. Chinese Journal of Computers, 2006, 29(4): 658-663.

【2】Mann S. On Being ''Undigital'' with digital cameras: extending dynamic range by combining differently exposed pictures[C]//Is & t''s Conference, 1995: 442-448.

【3】Debevec P E, Malik J. Recovering high dynamic range radiance maps from photographs[C]//Conference on Computer Graphics and Interactive Techniques, 1997: 369-378.

【4】Mitsunaga T, Nayar S K. Radiometric Self Calibration[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999: 374-380.

【5】Ikeda E. Image data processing apparatus for processing combined image signals in order to extend dynamic range: US, US 5801773 A[P]. 1998.

【6】Aggarwal M, Ahuja N. Split aperture imaging for high dynamic range[J]. International Journal of Computer Vision, 2004, 58(1): 7-17.

【7】Banterle F, Ledda P, Debattista K, et al. A framework for inverse tone mapping[J]. Visual Computer, 2007, 23(7): 467-478.

【8】朱恩弘, 张红英, 吴亚东, 等. 单幅图像的高动态范围图像生成方法[J]. 计算机辅助设计与图形学学报, 2016, 28(10): 1713-1722. ZHU Enhong, ZHANG Hongying, WU Yadong, et al. Method of generating high dynamic range image from a single image[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(10): 1713-1722.

【9】WANG T H, Chiu C W, WU W C, et al. Pseudo-multiple- exposure-based tone fusion with local region adjustment[J]. IEEE Trans. on Multimedia, 2015, 17(4): 470-484.

【10】Reinhard E, Kunkel T, Marion Y, et al. Display algorithms for high and low dynamic range display devices[J]. Journal of the Society for Information Display, 2012, 15(12): 997-1014.

【11】Barakat N, Hone A N, Darcie T E. Minimal-bracketing sets for high-dynamic-range image capture[J]. IEEE Trans. on Image Processing, 2008, 17(10): 1864-1875.

【12】WANG W, CHANG F. A multi-focus image fusion method based on laplacianpyramid[J]. Journal of Computers, 2011, 6(12): 2559-2566.

【13】Hill P R, Canagarajah C N, Bull D R. Image Fusion Using ComplexWavelets[C]//BMVC, 2002: 1-10.

【14】Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelettransform[J]. Information Fusion, 2007, 8(2): 143-156.

【15】江燊煜, 陈阔, 徐之海, 等. 基于曝光适度评价的多曝光图像融合方法[J]. 浙江大学学报: 工学版, 2015, 49(3): 470-475. JIANG Shenyu, CHEN Kuo, XU Zhihai, et al. Multi-exposure image fusion based on well-exposedness assessment[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(3): 470-475.

【16】Grossberg M D, Nayar S K . Determining the camera response from images: what is knowable?[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(11): 1455-1467.

【17】阳方林, 郭红阳, 杨风暴. 像素级图像融合效果的评价方法研究[J].测试技术学报, 2002(4): 44-47. YANG Fanglin, GUO Hongyang, YANG Fengbao. Study of evaluation methods on effect of pixel-level image fusion[J]. Journal of Test and Measurement Technology, 2002(4): 44-47.

【18】Piella G, Heijmans H. A new quality metric for image fusion[C]//International Conference on Image Processing of IEEE, 2003, 3: 173-176.

引用该论文

HE Li,CHEN Guo,GUO Hong,JIN Weiqi. A Dynamic Scene HDR Fusion Method Based on Dual-channel Low-light-level CMOS Camera[J]. Infrared Technology, 2020, 42(4): 340-347

贺理,陈果,郭宏,金伟其. 一种基于双通道 CMOS相机的低照度动态场景 HDR融合方法[J]. 红外技术, 2020, 42(4): 340-347

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF